2.執(zhí)行如圖所示的程序框圖,輸出的T=16.

分析 分析程序中各變量、各語(yǔ)句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是利用循環(huán)累加S與T的值,并輸出最后的T值.

解答 解:T=1,S=1,S=5,n=3,T=4,
T≤S,S=9,n=5,T=9,
T≤S,S=13,n=7,T=16,T>s,
輸出T=16,
故答案為:16.

點(diǎn)評(píng) 根據(jù)流程圖(或偽代碼)寫(xiě)程序的運(yùn)行結(jié)果,是算法這一模塊最重要的題型,其處理方法是::①分析流程圖(或偽代碼),從流程圖(或偽代碼)中既要分析出計(jì)算的類(lèi)型,又要分析出參與計(jì)算的數(shù)據(jù)(如果參與運(yùn)算的數(shù)據(jù)比較多,也可使用表格對(duì)數(shù)據(jù)進(jìn)行分析管理)⇒②建立數(shù)學(xué)模型,根據(jù)第一步分析的結(jié)果,選擇恰當(dāng)?shù)臄?shù)學(xué)模型③解模.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}{3x-y-6≤0}\\{x-y+2≥0}\\{x≥0,y≥0}\end{array}\right.$若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的值是最大值為12,則$\frac{2b+3a}{ab}$的最小值為(  )
A.$\frac{25}{6}$B.$\frac{8}{3}$C.$\frac{11}{3}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知離心率為$\frac{\sqrt{2}}{2}$的橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過(guò)點(diǎn)P(-1,$\frac{\sqrt{2}}{2}$).
(1)求橢圓C的方程;
(2)直線AB:y=k(x+1)交橢圓C于A、B兩點(diǎn),交直線l:x=m于點(diǎn)M,設(shè)直線PA、PB、PM的斜率依次為k1、k2、k3,問(wèn)是否存在實(shí)數(shù)t,使得k1+k2=tk3?若存在,求出實(shí)數(shù)t的值以及直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)命題p:?x0∈(0,+∞),lnx0=-1.命題q:若m>1,則橢圓$\frac{{x}^{2}}{m}$+y2=1的焦距為2$\sqrt{m-1}$,那么,下列命題為真命題的是( 。
A.¬qB.(¬p)∨(¬q)C.p∧qD.p∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)φ(x)=lnx-ax(a∈R).
(1)討論φ(x)的單調(diào)性;
(2)設(shè)f(x)=φ(x)-$\frac{1}{2}$x3,當(dāng)x>0時(shí),f(x)<0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知定義在R上的函數(shù)y=f(x)滿(mǎn)足以下三個(gè)條件:
①對(duì)于任意的x∈R,都有f(x+4)=f(x);
②對(duì)于任意的x1,x2∈R,且0≤x1<x2≤2,都有f(x1)<f(x2);
③函數(shù)y=f(x+2)的圖象關(guān)于y軸對(duì)稱(chēng),則下列結(jié)論中正確的是( 。
A.f(4.5)<f(7)<f(6.5)B.f(7)<f(4.5)<f(6.5)C.f(7)<f(6.5)<f(4.5)D.f(4.5)<f(6.5)<f(7)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.用數(shù)學(xué)歸納方法證明:22+42+62+…+(2n)2=$\frac{2}{3}$n(n+1)(2n+1)(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知實(shí)數(shù)x,y滿(mǎn)足$\left\{\begin{array}{l}2x-y≤0\\ x-3y+5≥0\\ x≥0\\ y≥0\end{array}\right.$,則$z={({\frac{1}{4}})^x}•{({\frac{1}{2}})^y}$的最小值為$\frac{1}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知輸入的x=11,執(zhí)行如圖所示的程序框圖,則輸出的x的值為( 。
A.12B.23C.47D.95

查看答案和解析>>

同步練習(xí)冊(cè)答案