設(shè)集合A={x|x≤-1或x≥4},B={x|2a≤x≤a+2}.若A∩B=B,求a的取值范圍.
考點(diǎn):交集及其運(yùn)算
專題:集合
分析:由A∩B=B,得B⊆A,然后分B為∅何B不為∅討論,當(dāng)B不是∅時(shí),由兩集合端點(diǎn)值間的關(guān)系列不等式組求得a的取值范圍.
解答: 解:由A∩B=B,得B⊆A,
若2a>a+2,即a>2,B=∅,滿足B⊆A;
當(dāng)2a≤a+2,即a≤2時(shí),要使B⊆A,
則a+2≤-1或2a≥4,解得a≤-3或a=2.
∴使A∩B=B的a的取值范圍是a≤-3或a≥2.
點(diǎn)評(píng):本題考查了交集及其運(yùn)算,考查了分類討論的解題思想方法,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

為了解學(xué)生身高情況,某校以10%的比例對(duì)全校700名學(xué)生按性別進(jìn)行抽樣檢查,測(cè)得身高情況的頻率分布直方圖如下:

已知樣本中身高在[150,155)cm的女生有1人.
(Ⅰ)求出樣本中該校男生的人數(shù)和女生的人數(shù);
(Ⅱ)估計(jì)該校學(xué)生身高在170~190cm之間的概率;
(Ⅲ)從樣本中身高在185~190cm之間的男生和樣本中身高在170~180cm之間的女生中隨機(jī)抽取3人,記被抽取的3人中的女生人數(shù)為X.求隨機(jī)變量X的分布列和數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)圓錐曲線Γ的兩個(gè)焦點(diǎn)分別為F1,F(xiàn)2.若曲線Γ上存在點(diǎn)P滿足|PF1|:|F1F2|:|PF2|=5:4:2,則曲線Γ的離心率等于(  )
A、
4
3
1
2
B、
4
3
3
4
C、2或
4
7
D、
4
3
4
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a b是非負(fù)數(shù) 且滿足2≤a+2b≤4 那么(a+1)2+(b+1)2的取值范圍是(  )
A、[5,
26
]
B、[5,26]
C、[
5
,
7
5
5
]
D、[
26
,
7
5
5
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知偶函數(shù)f(x)=ax2-bx+2(a≠0)的一個(gè)零點(diǎn)為1.
(1)求a,b的值;
(2)求函數(shù)y=f(x-1)在[0,3]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓C的左右焦點(diǎn)分別為F1(-3,0),F(xiàn)2(3,0),長軸長為10,點(diǎn)A(1,1)是橢圓內(nèi)一點(diǎn),點(diǎn)P是橢圓上的動(dòng)點(diǎn),則PA+
5
3
PF2的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
16
+
y2
12
=1內(nèi)一點(diǎn)A(1,-1),F(xiàn)為橢圓的右焦點(diǎn),在橢圓上有一點(diǎn)P,求|PA|+2|PF|的最小值及取得最小值時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓臺(tái)的體積是
26
3
3
πcm3,側(cè)面展開圖是半圓環(huán),半圓環(huán)的大半徑是小半徑的3倍,求這個(gè)圓臺(tái)小底面的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α∈(
2
,3π),化簡
1-sinα
+
1+sinα
=( 。
A、-2cos
α
2
B、2cos
α
2
C、-2sin
α
2
D、2sin
α
2

查看答案和解析>>

同步練習(xí)冊(cè)答案