精英家教網 > 高中數學 > 題目詳情
函數f(x)=
x-1
0
x+1
(x>0)
(x=0)
(x<0)
,則f[f(
1
2
)]
的值是( 。
A、
1
2
B、-
1
2
C、
3
2
D、-
3
2
分析:由題意可得函數是分段函數,因此應該先看自變量所在的范圍,進而求出答案.
解答:解:由題意可得:函數f(x)=
x-1
0
x+1
(x>0)
(x=0)
(x<0)
,
所以f(
1
2
)=-
1
2
,所以f(-
1
2
)=
1
2

故選A.
點評:解決此類問題的關鍵是審清題意結合函數解析式的特征解決問題,并且結合正確的運算.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

下列命題中所有正確的序號是
(1)(4)
(1)(4)

(1)函數f(x)=ax-1+3(a>0且a≠1)的圖象一定過定點P(1,4);
(2)函數f(x-1)的定義域是(1,3),則函數f(x)的定義域為(2,4);
(3)已知f(x)=x5+ax3+bx-8,且f(-2)=8,則f(2)=-8;
(4)已知2a=3b=k(k≠1)且
1
a
+
2
b
=1,則實數k=18.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)的定義域為R,若存在常數m>0,使|f(x)|≤m|x|對一切實數x均成立,則稱f(x)為F函數.給出下列函數:
①f(x)=0;②f(x)=x2;③f(x)=
2
(sinx+cosx)
;④f(x)=
x
x2+x+1
;其中是F函數的序號為
①④
①④

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•萊蕪二模)已知函數f(x)=x-4+
9
x+1
(x>-1)
,當x=a時,f(x)取得最小值,則在直角坐標系中,函數g(x)=(
1
a
)|x+1|
的大致圖象為( 。

查看答案和解析>>

科目:高中數學 來源:徐州模擬 題型:解答題

設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案