精英家教網 > 高中數學 > 題目詳情

【題目】某地擬規(guī)劃種植一批芍藥,為了美觀,將種植區(qū)域(區(qū)域I)設計成半徑為1km的扇形,中心角).為方便觀賞,增加收入,在種植區(qū)域外圍規(guī)劃觀賞區(qū)(區(qū)域II)和休閑區(qū)(區(qū)域III),并將外圍區(qū)域按如圖所示的方案擴建成正方形,其中點,分別在邊上.已知種植區(qū)、觀賞區(qū)和休閑區(qū)每平方千米的年收入分別是10萬元、20萬元、20萬元.

(1)要使觀賞區(qū)的年收入不低于5萬元,求的最大值;

(2)試問:當為多少時,年總收入最大?

【答案】(1)(2)

【解析】

(1)由,,所以全等.

可得,根據面積公式,可求得觀賞區(qū)的面積為,要使得觀賞區(qū)的年收入不低于5萬元,則要求,解不等式即可求出結果.

(2)由題意可得種植區(qū)的面積為,正方形面積為,設年總收入為萬元,則

,利用導數在函數單調性中的應用,即可求出結果.

(1)∵,,所以全等.

所以,觀賞區(qū)的面積為

,要使得觀賞區(qū)的年收入不低于5萬元,則要求,即,結合可知,則的最大值為.

(2)種植區(qū)的面積為

正方形面積為,

設年總收入為萬元,則

,

其中,求導可得.

時,,遞增;當時,,遞增.

所以當時,取得最大值,此時年總收入最大.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數,,若對任意給定的,關于的方程在區(qū)間上總存在唯一的一個解,則實數的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】5名男生4名女生站成一排,求滿足下列條件的排法:

(1)女生都不相鄰有多少種排法?

(2)男生甲、乙、丙排序一定(只考慮位置的前后順序),有多少種排法?

(3)男甲不在首位,男乙不在末位,有多少種排法?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,側面底面,底面為直角梯形,其中,,,,點在棱上且,點為棱的中點.

在棱上且,點位棱的中點.

(1)證明:平面平面

(2)求二面角的余弦值的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知曲線M上的動點到定點距離是它到定直線距離的一半.

(1)求曲線M的方程;

(2)設過點且傾斜角為的直線與曲線M相交與A、B兩點,在定直線l上是否存在點C,使得,若存在,求出點C的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數.

1)當時,求函數的最大值;

2)令,()其圖象上任意一點處切線的斜率恒成立,求實數的取值范圍;

3)當,,方程有唯一實數解,求正數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知一家公司生產某種品牌服裝的年固定成本為萬元,每生產千件需另投入萬元.設該公司一年內共生產該品牌服裝千件并全部銷售完,每千件的銷售收入為萬元,且.

(1)寫出年利潤(萬元)關于年產量(千件)的函數解析式;

(2)年產量為多少千件時,該公司在這一品牌服裝的生產中所獲得利潤最大?(注:年利潤=年銷售收入-年總成本)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某中學為調查該校學生每周參加社會實踐活動的情況,隨機收集了若干名學生每周參加社會實踐活動的時間(單位:小時),將樣本數據繪制如圖所示的頻率分布直方圖,且在[0,2)內的學生有1人.

(1)求樣本容量,并根據頻率分布直方圖估計該校學生每周參加社會實踐活動時間的平均值;

(2)將每周參加社會實踐活動時間在[4,12]內定義為“經常參加社會實踐”,參加活動時間在[0,4)內定義為“不經常參加社會實踐”.已知樣本中所有學生都參加了青少年科技創(chuàng)新大賽,有13人成績等級為“優(yōu)秀”,其余成績?yōu)椤耙话恪,其中成績?yōu)秀的13人種“經常參加社會實踐活動”的有12人.請將2×2列聯表補充完整,并判斷能否在犯錯誤的概率不超過0.05的前提下認為青少年科技創(chuàng)新大賽成績“優(yōu)秀”與經常參加社會實踐活動有關;

(3)在(2)的條件下,如果從樣本中“不經常參加社會實踐”的學生中隨機選取兩人參加學校的科技創(chuàng)新班,求其中恰好一人成績優(yōu)秀的概率.

參考公式和數據:

.

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某廠有4臺大型機器,在一個月中,一臺機器至多出現1次故障,且每臺機器是否出現故障是相互獨立的,出現故障時需1名工人進行維修,每臺機器出現故障需要維修的概率為.

(1)若出現故障的機器臺數為,求的分布列;

(2) 該廠至少有多少名工人才能保證每臺機器在任何時刻同時出現故障時能及時進行維修的概率不少于90%?

(3)已知一名工人每月只有維修1臺機器的能力,每月需支付給每位工人1萬元的工資,每臺機器不出現故障或出現故障能及時維修,就使該廠產生5萬元的利潤,否則將不產生利潤,若該廠現有2名工人,求該廠每月獲利的均值.

查看答案和解析>>

同步練習冊答案