已知橢圓的兩焦點為,為短軸的一個端點,則的外接圓的方程是                 。
,∴,∴是等腰直角三角形,∴的外接圓的圓心就是原點,半徑為,∴的外接圓的方程為:。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

若橢圓的焦距為,則的值為(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如果橢圓的兩條準線之間的距離是這個橢圓焦距的兩倍,那么這個橢圓的離心率為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的長軸是短軸的倍,且過點,并且以坐標軸為對稱軸,
求橢圓的標準方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點與橢圓的左焦點和右焦點的距離之比為,求點的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

給定四條曲線:①;②;③;④。其中與直線僅有一個交點的直線是(     )
A.①②③B.②③④C.①②④D.①③④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

求以橢圓的兩頂點為焦點,以橢圓的焦點為頂點的雙曲線方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知直線l1過點B(0,-6)且與直線2x-3λy=0平行,直線l2經過定點A(0,6)且斜率為-
3
,直線l1與l2相交于點P,其中λ∈R,
(1)當λ=1時,求點P的坐標.
(2)試問:是否存在兩個定點E、F,使得|PE|+|PF|為定值,若存在,求出E、F的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

中,.若以為焦點的橢圓經過點,則該橢圓的離心率          

查看答案和解析>>

同步練習冊答案