17.圓的參數(shù)方程為$\left\{\begin{array}{l}{x=4cosθ}\\{y=4sinθ}\end{array}\right.$(θ為參數(shù),0≤θ<2π),若Q(-2,2$\sqrt{3}$)是圓上一點,則對應(yīng)的參數(shù)θ的值是( 。
A.$\frac{π}{3}$B.$\frac{2}{3}$πC.$\frac{4}{3}$πD.$\frac{5}{3}$π

分析 根據(jù)題意,由圓的參數(shù)方程以及點Q的坐標(biāo)可得4cosθ=-2,4sinθ=2$\sqrt{3}$,解可得θ的值,即可得答案.

解答 解:根據(jù)題意,圓的參數(shù)方程為$\left\{\begin{array}{l}{x=4cosθ}\\{y=4sinθ}\end{array}\right.$(θ為參數(shù),0≤θ<2π),
若Q(-2,2$\sqrt{3}$)是圓上一點,則有4cosθ=-2,4sinθ=2$\sqrt{3}$,
解可得cosθ=-$\frac{1}{2}$,sinθ=$\frac{\sqrt{3}}{2}$,
則θ=$\frac{2π}{3}$;
故選:B.

點評 本題考查圓的參數(shù)方程,關(guān)鍵是掌握參數(shù)方程的定義以及表示方法,其次注意參數(shù)的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.有3名男生,4名女生,在下列不同要求下,求不同的排列方法種數(shù):
(1)選其中5人排成一排
(2)全體排成一排,甲不站在排頭也不站在排尾
(3)全體排成一排,男生互不相鄰
(4)全體排成一排,甲、乙兩人中間恰好有3人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知△ABC的三個頂點A,B,C及△ABC所在平面內(nèi)一點G,若$\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow 0$,且實數(shù)λ滿足$\overrightarrow{AB}+\overrightarrow{AC}=λ\overrightarrow{AG}$,則λ=(  )
A.$\frac{3}{2}$B.3C.-1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.有一段演繹推理是這樣的:“直線平行于平面,則此直線平行于平面內(nèi)的所有直線;已知直線b∥平面α,直線a?平面α,則直線b∥直線a”.結(jié)論顯然是錯誤的,這是因為(1).
(1)大前提錯誤    (2)推理形式錯誤     (3)小前提錯誤     (4)以上都錯誤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.直線l過點(1,4),且在兩坐標(biāo)軸上的截距的積是18,求此直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知數(shù)列{an}的前n項和為Sn,a1=1且an+1=2Sn+1(n∈N*);
數(shù)列{bn}中,b1=3且對n∈N*,點(bn,bn+1)都在函數(shù)y=x+2的圖象上.
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)是否存在正整數(shù)n,使得a1b1+a2b2+…+anbn>100n?若存在,求n的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.(1)已知關(guān)于x的不等式ax2+bx+c<0的解集是{x|x<-2,或x>-$\frac{1}{2}$},求不等式ax2-bx+c>0的解集.
(2)已知M是關(guān)于x的不等式2x2+(3a-7)x+3+a-2a2<0的解集,且M中的一個元素是0,求實數(shù)a的取值范圍,并用a表示出該不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知等差數(shù)列{an}的前n和為Sn,公差d≠0.且a3+S5=42,a1,a4,a13成等比數(shù)列
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若Sn表示數(shù)列{an}的前n項和,求數(shù)列$\left\{{\frac{1}{S_n}}\right\}$的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在等差數(shù)列{an}中,若a4+a6+a8+a10+a12=90,則${a_{10}}-\frac{1}{3}{a_{14}}$的值為12.

查看答案和解析>>

同步練習(xí)冊答案