輪船由甲地逆水勻速行駛至乙地,甲、乙兩地相距S km,水流速度為常數(shù)P km/h,船在靜水中的最大速度為Q km/h(Q>P),已知輪船每小時的燃料費用與輪船在靜水中的速度V km/h成正比,比例系數(shù)為常數(shù)K.
(1)將全程燃料費用y(元)表示為靜水中速度V(km/h)的函數(shù);
(2)若S=100,P=10,Q=110,K=2,為了使全程的燃料費用最少,輪船的實際前進速度應(yīng)為多少?
考點:函數(shù)模型的選擇與應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)根據(jù)路程、速度與時間的關(guān)系即可列出函數(shù)式;
(2)由(1)得y=
2×100v
v-10
=200(1+
10
v-10
),(10<v≤110),可得函數(shù)f(v)=
10
v-10
在(10,110]上是減函數(shù),即可求得y的最小值.
解答: 解:(1)∵船在全程行駛的時間t=
s
v-p

∴y=
ksv
v-p
(p<v≤q).
(2)若s=100;p=10;q=110,k=2
則y=
2×100v
v-10
=200(1+
10
v-10
),(10<v≤110)
由于f(v)=
10
v-10
在(10,110]上是減函數(shù),
∴當(dāng)v=110時,y取最小值;ymin=200×(1+
10
110-10
)=220
即為了使全程的燃料費用最少,輪船的實際前進速度應(yīng)為110km/h.
點評:本題考查函數(shù)解析式的列法及函數(shù)最值的求法,考查學(xué)生分析問題、解決問題的能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列敘述不正確的是( 。
A、f(x)=x|x|是奇函數(shù)
B、f(x)=
x2
x
是奇函數(shù)
C、f(x)=x2+|x|是偶函數(shù)
D、f(x)=|x+1|-|x-1|是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

O點為圓O的圓心,點A,B在圓O上,且點A在第一象限,點B(-
3
5
4
5
),點C為圓O與x軸正半軸的交點,設(shè)∠COB=θ,求sin2θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正方形ABCD中,E、F分別在AB、BC邊上,且BE=BF=
1
4
BC,將△AED和△CFD分別沿DE、DF折起,使A、C兩點重合于點P,連接EF、PB.
(1)求證:PD⊥EF;
(2)求異面直線PB和EF所成角的大;
(3)求證:點P在平面EFD上的射影不可能落在EF上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對向量
a
=(a1,a2),
b
=(b1,b2)定義一種運算“⊕”:a?b=(a1,a2)⊕(b1,b2)=(a1b1,a2b2),已知動點P,Q分別在曲線y=sinx和y=f(x)上運動,且
OQ
=m⊕
Op
+m(其中O為坐標(biāo)原點),若向量
m
=(
1
2
,3),
n
=(
π
6
,0),則y=f(x)的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=min{-x+6,-2x2+4x+6}(min{a,b}表示取a,b中較小值),則f(x)的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若奇函數(shù)f(x)在區(qū)間[2,5]上的最小值是5,那么f(-x)在區(qū)間[-5,-2]上有( 。
A、最小值-5B、最小值5
C、最大值-5D、最大值5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線y=kx+3與曲線x2+y2-2xcosα+2(1+sinα)(1-y)=0有且只有一個公共點,則實數(shù)k的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=4x的焦點為F,點P(x,y)為該拋物線上的動點,又點A(-1,0),則
|PF|
|PA|
的取值范圍是( 。
A、[
2
2
,1]
B、[
1
2
,1]
C、[
2
2
,
2
]
D、[1,2]

查看答案和解析>>

同步練習(xí)冊答案