精英家教網 > 高中數學 > 題目詳情
如圖,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=CC1=a,E是A1C1的中點,F是AB中點.
(1)求證:EF∥面BB1C1C;
(2)求直線EF與直線CC1所成角的正切值.
分析:(1)利用線面平行的判定定理,證明平面EFG∥平面BB1C1C,即可.
(2)根據直線所成角的定義,進行求解.
解答:解:(1)取AC的中點G,連結EG,FG,
∵EG∥C1C,C1C?平面EFG,
∴C1C∥平面EFG,
同理可證BC∥平面EFG,
又∵BC,C1C?面BB1C1C,
∴平面EFG∥平面BB1C1C,
∴EF∥面BB1C1C.
(2)∵在三棱柱ABC-A1B1C1中,∴EG⊥面BB1C1C,
∵EG∥C1C,
∴∠FEG為直線EF與C1C所成的角,
∵△EFG為直角三角形,
∴tan∠EFG=
FG
EG
=
1
2
a
a
=
1
2
點評:本題主要考查線面平行的判定以及直線所成角的定義及求法,要求熟練掌握相應的判定定理和性質定理.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值; 

(Ⅲ)求點C到平面B1DP的距離.

查看答案和解析>>

科目:高中數學 來源:2011年四川省招生統(tǒng)一考試理科數學 題型:解答題

 

 (本小題共l2分)

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[來源:]

P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求點C到平面B1DP的距離.

 

查看答案和解析>>

科目:高中數學 來源:2011年高考試題數學理(四川卷)解析版 題型:解答題

 (本小題共l2分)

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求點C到平面B1DP的距離.

 

 

 

查看答案和解析>>

科目:高中數學 來源:四川省高考真題 題型:解答題

如圖,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一點,P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA。
(I)求證:CD=C1D;
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點C到平面B1DP的距離

查看答案和解析>>

科目:高中數學 來源: 題型:

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一點,P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;

(Ⅲ)求點C到平面B1DP的距離.

查看答案和解析>>

同步練習冊答案