若直線y=x+m與曲線x=
1-y2
只有一個(gè)公共點(diǎn),則實(shí)數(shù)m的取值范圍是(  )
A、m=±
2
B、m≥
2
或m≤-
2
C、-
2
<m<
2
D、-1<m≤1或m=-
2
考點(diǎn):直線與圓相交的性質(zhì)
專題:直線與圓
分析:由x=
1-y2
,化簡(jiǎn)得x2+y2=1,注意到x≥0,所以這個(gè)曲線應(yīng)該是半徑為1,圓心是(0,0)的半圓,且其圖象只在一、四象限.畫出圖象,這樣因?yàn)橹本與其只有一個(gè)交點(diǎn),由此能求出實(shí)數(shù)m的取值范圍.
解答: 解:由x=
1-y2
,化簡(jiǎn)得x2+y2=1,注意到x≥0,
所以這個(gè)曲線應(yīng)該是半徑為1,圓心是(0,0)的半圓,
且其圖象只在一、四象限.
畫出圖象,這樣因?yàn)橹本與其只有一個(gè)交點(diǎn),
從圖上看出其三個(gè)極端情況分別是:
①直線在第四象限與曲線相切,
②交曲線于(0,-1)和另一個(gè)點(diǎn),
③與曲線交于點(diǎn)(0,1).
直線在第四象限與曲線相切時(shí)解得m=-
2

當(dāng)直線y=x+m經(jīng)過點(diǎn)(0,1)時(shí),m=1.
當(dāng)直線y=x+m經(jīng)過點(diǎn)(0,-1)時(shí),m=-1,所以此時(shí)-1<m≤1.
綜上滿足只有一個(gè)公共點(diǎn)的實(shí)數(shù)m的取值范圍是:
-1<m≤1或m=-
2

故選:D.
點(diǎn)評(píng):本題考查實(shí)數(shù)的取值范圍的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意數(shù)形結(jié)合思想的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=10+loga(x+
x2+1
)且f(1)=2,則f(-1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實(shí)數(shù)x、y滿足
x-4y+4≥0
2x-3y-2≤0
(x≥0,y≥0),若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為1,則log2
1
a
+
2
b
)的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足(x+2)•f′(x)<0(其中f′(x)是函數(shù)f(x)的導(dǎo)數(shù)),又a=f(log23),b=f(1),c=f(ln3),則( 。
A、a<c<b
B、b<c<a
C、c<a<b
D、c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于定義域?yàn)镈的函數(shù)y=f(x)和常數(shù)c,若對(duì)任意正實(shí)數(shù)ξ,?x∈D,使得0<|f(x)-c|<ξ恒成立,則稱函數(shù)y=f(x)為“斂c函數(shù)”,現(xiàn)給出如下函數(shù):
①f(x)=x(x∈Z);
②f(x)=(
1
2
x+2(x∈Z);
③f(x)=log2x+1;
④f(x)=
2x-1
2x

其中為“斂2函數(shù)”的有( 。
A、①②B、③④
C、①②③D、②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線y=x-4與拋物線y2=2x所圍成的圖形面積是(  )
A、15B、16C、17D、18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sinωx+cosωx(ω>0)的圖象與直線y=-2的兩個(gè)相鄰公共點(diǎn)之間的距離等于π,則f(x)的單調(diào)遞減區(qū)間是( 。
A、[kπ+
π
6
,kπ+
3
],k∈z
B、[kπ-
π
3
,kπ+
π
6
],k∈z
C、[2kπ+
π
3
,2kπ+
3
],k∈z
D、[2kπ-
π
12
,2kπ+
12
],k∈z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a+2b=2(a,b>0),則ab的最大值為(  )
A、
1
2
B、2
C、3
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面直角坐標(biāo)系中,由不等式組
x+y≤0
x-y≤0
x≥-3
圍成的區(qū)域的面積是(  )
A、6B、7C、8D、9

查看答案和解析>>

同步練習(xí)冊(cè)答案