(理科)設(shè)離散型隨機(jī)變量ξ可能取的值為1,2,3,4.P(ξ=k)=ak+b(k=1,2,3,4),又ξ的數(shù)學(xué)期望Eξ=3,則a+b等于


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
B
分析:根據(jù)隨機(jī)變量ξ的分布列,寫出四個(gè)變量對應(yīng)的概率,并且根據(jù)概率之和是1得到關(guān)于a和b的方程,又有變量的期望值,列出關(guān)于a、b的另一個(gè)等式,進(jìn)而結(jié)合兩個(gè)方程解方程組即可得到答案.
解答:由題意可得:P(ξ=k)=ak+b(k=1,2,3,4),
∴P(ξ=1)+P(ξ=2)+P(ξ=3)+P(ξ=4)=(a+b)+(2a+b)+(3a+b)+(4a+b)=1,
整理得:10a+4b=1,…①
又因?yàn)棣蔚臄?shù)學(xué)期望Eξ=3,
所以(a+b)+2(2a+b)+3(3a+b)+4(4a+b)=3,
整理得:30a+10b=3,…②
由①②可得:,
所以a+b=
故選B.
點(diǎn)評:解決此類問題的關(guān)鍵是熟練掌握離散型隨機(jī)變量的分布列,以及其與期望之間的關(guān)系,求離散型隨機(jī)變量的分布列和期望是近年來理科高考必出的一個(gè)問題,題目做起來不難,運(yùn)算量也不大,是高考命題的熱點(diǎn)之一.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(理科)設(shè)ξ是一個(gè)離散型隨機(jī)變量.
(1)若ξ~B(n,p),且E(3ξ+2)=9.2,D(3ξ+2)=12.96,則n、p的值分別為
6
6
、
0.4
0.4
;
(2)若ξ的分布列如表,則Eξ=
3-3
3
4
3-3
3
4
ξ -1 0 1
P
3
4
1-3a 2a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理科)設(shè)離散型隨機(jī)變量ξ可能取的值為1,2,3,4.P(ξ=k)=ak+b(k=1,2,3,4),又ξ的數(shù)學(xué)期望Eξ=3,則a+b等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(理科)設(shè)離散型隨機(jī)變量ξ可能取的值為1,2,3,4.P(ξ=k)=ak+b(k=1,2,3,4),又ξ的數(shù)學(xué)期望Eξ=3,則a+b等于( 。
A.
1
4
B.
1
10
C.
1
5
D.
1
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(理科)設(shè)離散型隨機(jī)變量ξ可能取的值為1,2,3,4.P(ξ=k)=ak+b(k=1,2,3,4),又ξ的數(shù)學(xué)期望Eξ=3,則a+b等于(  )
A.
1
4
B.
1
10
C.
1
5
D.
1
12

查看答案和解析>>

同步練習(xí)冊答案