如圖,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD=60°.
(1)證明:面PBD⊥面PAC;
(2)求銳二面角A-PC-B的余弦值.
分析:(1)根據(jù)菱形的對(duì)角線互相垂直及線面垂直的性質(zhì),可得AC⊥BD,PA⊥BD,由線面垂直的判定定理可得BD⊥面 PAC,再由面面垂直的判定定理可得面PBD⊥面PAC;
(2)以O(shè)A、OB、OQ所在直線分別為x軸、z軸,建立空間直角坐標(biāo)系O-xyz,分別求出平面PAC的法向量和平面PBC的法向量,代入向量夾角公式,可得答案.
解答:證明:(1)因?yàn)樗倪呅蜛BCD是菱形,
所以AC⊥BD
因?yàn)镻A⊥平面ABCD,
所有PA⊥BD.…(2分)
又因?yàn)镻A∩AC=A,
所以BD⊥面 PAC.…(3分)
而BD?面PBD,
所以面PBD⊥面PAC.…(5分)
解:(2)如圖,設(shè)AC∩BD=O.取PC的中點(diǎn)Q,連接OQ.
在△APC中,AO=OC,CQ=QP,OQ為△APC的中位線,所以O(shè)Q∥PA.
因?yàn)镻A⊥平面ABCD,
所以O(shè)Q⊥平面ABCD,…(6分)
以O(shè)A、OB、OQ所在直線分別為x軸、z軸,建立空間直角坐標(biāo)系O-xyz
則A(
3
,0,0),B(0,1,0),C(-
3
,0,0),P(
3
,0,2)…(7分)
因?yàn)锽O⊥面PAC,
所以平面PAC的一個(gè)法向量為
OB
=(0,1,0),…(8分)
設(shè)平面PBC的一個(gè)法向量為
n
=(x,y,z)
BC
=(-
3
,-1,0),
PB
=(-
3
,1,-2)
n
BC
=0
n
PB
=0
-
3
x-y=0
-
3
x+y-2z=0

令x=1,則y=-
3
,z=-
3

所以
n
=(1,-
3
,-
3
)為平面PBC的一個(gè)法向量.…(10分)
cos<
OB
,
n
>=
|
OB
n
|
|
OB
|•|
n
|
=
21
7
…(12分)
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是線面的判定,面面垂直的判定,二面角的求法,其中(1)的關(guān)鍵是熟練掌握線線垂直,線面垂直,面面垂直之間的相互轉(zhuǎn)化,(2)的關(guān)鍵是建立空間坐標(biāo)系,將二面角問題轉(zhuǎn)化為向量夾角問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD=60,
(1)求點(diǎn)A到平面PBD的距離的值;
(2)求二面角A-PB-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

15、如圖四邊形ABCD是菱形,PA⊥平面ABCD,Q為PA的中點(diǎn).
求證:(1)PC∥平面QBD;
(2)平面QBD⊥平面PAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD=60°.
(Ⅰ)求證:平面PBD⊥平面PAC;
(Ⅱ)求點(diǎn)A到平面PBD的距離;
(Ⅲ)求二面角A-PB-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD=60°.
(1)求證:平面PBD⊥平面PAC;
(2)求點(diǎn)A到平面PBD的距離;
(3)求二面角B-PC-A的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案