記函數(shù)fx)的定義域?yàn)?/sub>D,若存在,使成立,則稱為坐標(biāo)的點(diǎn)為函數(shù)fx)圖象上的不動(dòng)點(diǎn).

1)若函數(shù)圖象上有兩個(gè)關(guān)于原點(diǎn)對(duì)稱的不動(dòng)點(diǎn),求a,b應(yīng)滿足的條件;

2)在(1)的條件下,若a=8,記函數(shù)fx 圖象上有兩個(gè)不動(dòng)點(diǎn)分別為A1,A2,P為函數(shù)fx)圖象上的另一點(diǎn),其縱坐標(biāo)>3,求點(diǎn)P到直線A1A2距離的最小值及取得最小值時(shí)的坐標(biāo);

3)下述命題:若定義在R上的奇函數(shù)fx)圖象上存在有限個(gè)不動(dòng)點(diǎn),則不動(dòng)點(diǎn)有奇數(shù)個(gè)是否正確?若正確,給予證明;若不正確,請(qǐng)舉一反例.

解:(1)若函數(shù)fx)不動(dòng)點(diǎn),則有

整理得          ①            

根據(jù)題意可判斷方程有兩個(gè)根,且這兩個(gè)根互為相反數(shù),得

>4a  且<0

所以b=3 ,a>0                                    

,所以

b=3,a>0,且a≠9.                                 

(2)在(1)的條件下,當(dāng)a=8時(shí),

,解得兩個(gè)不動(dòng)點(diǎn)為,

設(shè)點(diǎn)Px ,y),y>3 , >3解得x<-3

設(shè)點(diǎn)Pxy)到直線A1A2的距離為d,則

.                        

當(dāng)且僅當(dāng),即x=―4時(shí),取等號(hào),此時(shí)P(―4,4).

(3)命題正確.                              

因?yàn)?i>f(x)定義在R上的奇函數(shù),所以f(―0)=―f(0) ,所以0是奇函數(shù)fx)的一個(gè)不動(dòng)點(diǎn).

設(shè)c≠0是奇函數(shù)fx)的一個(gè)不動(dòng)點(diǎn),fc)=c ,,所以―c也是f (x)的一個(gè)不動(dòng)點(diǎn).

所以奇函數(shù)fx)的非零不動(dòng)點(diǎn)如果存在,則必成對(duì)出現(xiàn),故奇函數(shù)fx)的不動(dòng)點(diǎn)數(shù)目是奇數(shù)個(gè).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

記函數(shù)f(x)的定義域?yàn)镈,若存在x0∈D,使f(x0)=x0成立,則稱以(x0,y0)為坐標(biāo)的點(diǎn)是函數(shù)f(x)的圖象上的“穩(wěn)定點(diǎn)”.
(1)若函數(shù)f(x)=
3x-1x+a
的圖象上有且只有兩個(gè)相異的“穩(wěn)定點(diǎn)”,試求實(shí)數(shù)a的取值范圍;
(2)已知定義在實(shí)數(shù)集R上的奇函數(shù)f(x)存在有限個(gè)“穩(wěn)定點(diǎn)”,求證:f(x)必有奇數(shù)個(gè)“穩(wěn)定點(diǎn)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

記函數(shù)f(x)的定義域?yàn)镈,若存在x0∈D,使f(x0)=x0成立,則稱以(x0,x0)為坐標(biāo)的點(diǎn)為函數(shù)f(x)圖象上的不動(dòng)點(diǎn).
(1)若函數(shù)f(x)=
3x+a
x+b
圖象上有兩個(gè)關(guān)于原點(diǎn)對(duì)稱的不動(dòng)點(diǎn),求實(shí)數(shù)a,b應(yīng)滿足的條件;
(2)設(shè)點(diǎn)P(x,y)到直線y=x的距離d=
|x-y|
2
.在(1)的條件下,若a=8,記函數(shù)f(x)圖象上的兩個(gè)不動(dòng)點(diǎn)分別為A1,A2,P為函數(shù)f(x)圖象上的另一點(diǎn),其縱坐標(biāo)yP>3,求點(diǎn)P到直線A1A2距離的最小值及取得最小值時(shí)點(diǎn)P的坐標(biāo).
(3)下述命題“若定義在R上的奇函數(shù)f(x)圖象上存在有限個(gè)不動(dòng)點(diǎn),則不動(dòng)點(diǎn)有奇數(shù)個(gè)”是否正確?若正確,請(qǐng)給予證明;若不正確,請(qǐng)舉一反例.若地方不夠,可答在試卷的反面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

記函數(shù)f(x)的定義域?yàn)镈,若存在x0∈D,使f(x0)=x0成立,則稱以(x0,x0)為坐標(biāo)的點(diǎn)為函數(shù)f(x)圖象上的不動(dòng)點(diǎn).
(1)若函數(shù)f(x)=
3x+a
x+b
圖象上有兩個(gè)關(guān)于原點(diǎn)對(duì)稱的不動(dòng)點(diǎn),求實(shí)數(shù)a,b應(yīng)滿足的條件;
(2)設(shè)點(diǎn)P(x,y)到直線y=x的距離d=
|x-y|
2
.在(1)的條件下,若a=8,記函數(shù)f(x)圖象上的兩個(gè)不動(dòng)點(diǎn)分別為A1,A2,P為函數(shù)f(x)圖象上的另一點(diǎn),其縱坐標(biāo)yP>3,求點(diǎn)P到直線A1A2距離的最小值及取得最小值時(shí)點(diǎn)P的坐標(biāo).
(3)下述命題“若定義在R上的奇函數(shù)f(x)圖象上存在有限個(gè)不動(dòng)點(diǎn),則不動(dòng)點(diǎn)有奇數(shù)個(gè)”是否正確?若正確,請(qǐng)給予證明;若不正確,請(qǐng)舉一反例.若地方不夠,可答在試卷的反面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

記函數(shù)f(x)的定義域?yàn)镈,若存在x0∈D,使得f(x)=x成立,則稱(x0,x0)為函數(shù)f(x)圖象上的“穩(wěn)定點(diǎn)”.

(1)是否存在實(shí)數(shù)a,使函數(shù)f(x)=的圖象上有且僅有兩個(gè)相異的穩(wěn)定點(diǎn)?若存在,求出范圍;若不存在,請(qǐng)說(shuō)明理由.

(2)若函數(shù)f(x)是定義在R上的奇函數(shù),求證:函數(shù)必有奇數(shù)個(gè)穩(wěn)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省茂名市高州中學(xué)高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

記函數(shù)f(x)的定義域?yàn)镈,若存在x∈D,使f(x)=x成立,則稱以(x,y)為坐標(biāo)的點(diǎn)是函數(shù)f(x)的圖象上的“穩(wěn)定點(diǎn)”.
(1)若函數(shù)的圖象上有且只有兩個(gè)相異的“穩(wěn)定點(diǎn)”,試求實(shí)數(shù)a的取值范圍;
(2)已知定義在實(shí)數(shù)集R上的奇函數(shù)f(x)存在有限個(gè)“穩(wěn)定點(diǎn)”,求證:f(x)必有奇數(shù)個(gè)“穩(wěn)定點(diǎn)”.

查看答案和解析>>

同步練習(xí)冊(cè)答案