10.若an+1=2an+1(n=1,2,3,…).且a1=1.
(1)求a2,a3,a4,a5;
(2)歸納猜想通項公式an

分析 (1)根據(jù)遞推公式,分別代值計算即可,
(2)由(1)可以猜想an=2n-1(n∈N*).

解答 解:(1)由已知a1=1,an+1=2an+1,得
a2=3=22-1,a3=7=23-1,
a4=15=24-1,a5=31=25-1.
(2)歸納猜想,得an=2n-1(n∈N*).

點評 本題考查了數(shù)列通項公式的猜想,關(guān)鍵是尋找規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下面幾種推理是合情推理的是( 。
①由圓x2+y2=r2的面積是πr2,猜想出橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1的面積是πab;
②由a1=1,an=2n-1,求出S1,S2,S3,猜想出數(shù)列{an}的前n項和Sn的表達式;
③三角形內(nèi)角和是180°,四邊形內(nèi)角和是360°,五邊形內(nèi)角和是540°,由此得凸n邊形內(nèi)角和是(n-2)•180°;
④所有自然數(shù)都是整數(shù),4是自然數(shù),所以4是整數(shù).
A.①④B.②③C.①②③D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=(ax+b)lnx-bx+3在(1,f(1))處的切線方程為y=2.
(1)求a,b的值;
(2)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)y=sin($\frac{π}{3}$+4x)+cos(4x-$\frac{π}{6}}$)
(1)求它的最小正周期
(2)求它的最大最小值及對應(yīng)的x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在△ABC中,A,B,C是其三個角,若sinA>sinB,則A與B的大小關(guān)系是(  )
A.A≥BB.A<BC.A>BD.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=cos2x(x∈R),下面結(jié)論錯誤的是( 。
A.函數(shù)f(x)的最小正周期為πB.函數(shù)f(x)是偶函數(shù)
C.函數(shù)f(x)的圖象關(guān)于直線$x=\frac{π}{4}$對稱D.函數(shù)f(x)在區(qū)間$[{0,\frac{π}{2}}]$上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若函數(shù)f(x)=x•ex+f′(-1)•x2,則f′(-1)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若曲線y=ax-ln(x+1)在點(0,0)處的切線與直線2x-y-6=0平行,則a=( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若直線l的斜率k的取值范圍為[-1,1],則其傾斜角α的取值范圍是( 。
A.$[\frac{π}{4},\frac{3π}{4}]$B.$[0,\frac{3π}{4}]$C.$[-\frac{π}{4},\frac{π}{4}]$D.$[0,\frac{π}{4}]∪[\frac{3π}{4},π)$

查看答案和解析>>

同步練習(xí)冊答案