A. | 3 | B. | 2 | C. | 9 | D. | 4 |
分析 首先利用向量垂直得到x,z之間的關(guān)系,結(jié)合約束條件對應(yīng)的平面區(qū)域,求出z的最小值.
解答 解:因?yàn)橄蛄?\overrightarrow a=(x-z,1)$,$\overrightarrow b=(2,y+z)$,且$\overrightarrow a⊥\overrightarrow b$,所以2(x-z)+y+z=0即y=-2x+z,
又約束條件對應(yīng)的平面區(qū)域如圖:當(dāng)直線y=-2x+z經(jīng)過圖中B時(shí)z最小,由$\left\{\begin{array}{l}{x+y=2}\\{y=x}\end{array}\right.$得到B(1,1),所以z的最小值為2×1+1=3;
故選A.
點(diǎn)評 本題考查了簡單線性規(guī)劃問題,首先正確畫出可行域,利用目標(biāo)函數(shù)的幾何意義求最值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 120 | B. | 140 | C. | 180 | D. | 200 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $\frac{5}{3}$ | C. | $\frac{4}{5}$ | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=$\sqrt{-{x^2}-1}$ | B. | y=$\left\{\begin{array}{l}{x^2},x≥0\\ 1,x≤0\end{array}\right.$ | ||
C. | y=$\left\{\begin{array}{l}{x,x≥0}\\{0,-1<x<0}\end{array}\right.$ | D. | y2=x |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com