已知數(shù)列{an}是等差數(shù)列,且滿足:a1+a2+a3=6,a5=5;數(shù)列{bn}滿足:bn-bn-1=an-1(n≥2,n∈N﹡),b1=1.
(Ⅰ)求an和bn;
(Ⅱ)記數(shù)列cn=
1bn+2n
(n∈N*),若{cn}的前n項和為Tn,求Tn
分析:(Ⅰ)利用a1+a2+a3=6,a5=5;通過數(shù)列是等差數(shù)列得到首項與公差的關系式,求出an,通過bn-bn-1=an-1,利用bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1,求出bn;
(Ⅱ)化簡數(shù)列cn=
1
bn+2n
(n∈N*)的表達式,利用裂項法即可求解{cn}的前n項和為Tn
解答:解:(Ⅰ)∵a1+a2+a3=6,a5=5;,∴
3a1+3d=6
a1+4d=5
可得a1=1,d=1,…(2分)
∴an=n    (3分)
又bn-bn-1=an-1=n-1,(n≥2,n∈N*),b1=1,
∴當n≥2時,
bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=(n-1)+(n-2)+(n-3)+…+(2-1)+1
=
n(n-1)
2
+1

=
n2-n+2
2
,…(4分)
又b1=1適合上式,…(5分)
∴bn=
n2-n+2
2
. …(6分)
(Ⅱ)∵cn=
1
bn+2n
=
2
n2+3n+2
=
2
(n+1)(n+2)
=2(
1
n+1
-
1
n+2
)
,…(8分)
∴Tn=2(
1
2
-
1
3
)+2(
1
3
-
1
4
)+2(
1
4
-
1
5
)+…+2(
1
n+1
-
1
n+2
)

=2(
1
2
-
1
n+2
)
=1-
2
n+2
=
n
n+2
.…(12分)
點評:本題考查等差數(shù)列與等比數(shù)列的綜合應用,數(shù)列求和的方法|(裂項法以及累加法),考查分析問題解決問題的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

定義一個“等積數(shù)列”:在一個數(shù)列中,如果每一項與它后一項的積都是同一常數(shù),那么這個數(shù)列叫“等積數(shù)列”,這個常數(shù)叫做這個數(shù)列的公積.已知數(shù)列{an}是等積數(shù)列,且a1=2,公積為5,則這個數(shù)列的前n項和Sn的計算公式為:
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在一個數(shù)列中,如果?n∈N*,都有an•an+1•an+2=k(k為常數(shù)),那么這個數(shù)列叫做等積數(shù)列,k叫做這個數(shù)列的公積.已知數(shù)列{an}是等積數(shù)列,且a1=1,a2=3,公積為27,則a1+a2+a3+…+a18=
78
78

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義“等積數(shù)列”:在一個數(shù)列中,如果每一個項與它的后一項的積都為同一個常數(shù),那末這個數(shù)列叫做等積數(shù)列,這個常數(shù)叫做該數(shù)列的公積.已知數(shù)列{an}是等積數(shù)列,且a1=2,公積為5,Tn為數(shù)列{an}前n項的積,則T2011=
51006
2
51006
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

我們對數(shù)列作如下定義,如果?n∈N*,都有anan+1an+2=k(k為常數(shù)),那么這個數(shù)列叫做等積數(shù)列,k叫做這個數(shù)列的公積.已知數(shù)列{an}是等積數(shù)列,且a1=1,a2=2,公積為6,則a1+a2+a3+…+a9=
18
18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列的定義為:在一個數(shù)列中,從第二項起,如果每一項與它的前一項的差都為同一個常數(shù),那么這個數(shù)列叫做等差數(shù)列,這個常數(shù)叫做該數(shù)列的公差.
(1)類比等差數(shù)列的定義給出“等和數(shù)列”的定義;
(2)已知數(shù)列{an}是等和數(shù)列,且a1=2,公和為5,求 a18的值,并猜出這個數(shù)列的通項公式(不要求證明).

查看答案和解析>>

同步練習冊答案