已知:如圖,⊙O1與⊙O2外切于C點,AB一條外公切線,A、B分別為切點,連接AC、BC.設(shè)⊙O1的半徑為R,⊙O2的半徑為r,若tan∠ABC=
2
,則
R
r
的值為(  )
A.
2
B.
3
C.2D.3
精英家教網(wǎng)
如圖,連接O2B,O1A,過點C作兩圓的公切線CF,交于AB于點F,作O1E⊥AC,O2D⊥BC,
由垂徑定理可證得點E,點D分別是AC,BC的中點,
由弦切角定理知,

精英家教網(wǎng)
∠ABC=∠FCB=
1
2
∠BO2C,∠BAC=∠FCA=
1
2
∠AO1C,
∵AO1O2B,
∴∠AO1C+∠BO2C=180°,
∴∠FCB+∠FCA=∠ACB=90°,
即△ACB是直角三角形,
∴∠ABC=∠BO2D=∠ACO1
設(shè)∠ABC=∠BO2D=∠ACO1=β,
則有sinβ=
BC
2r
,cosβ=
AC
2R
,
∴tanβ=
R
r
?
BC
AC
=
R
r
?
1
tanβ

∴(tanβ)2=
R
r
=2.
故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,⊙O1與⊙O2外切于C點,AB一條外公切線,A、B分別為切點,連接AC、BC.設(shè)⊙O1的半徑為R,⊙O2的半徑為r,若tan∠ABC=
2
,則
R
r
的值為( 。
A、
2
B、
3
C、2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:如圖,O1與O2外切于點P,經(jīng)過O1上一點A作O1的切線交O2于B、C兩點,直線AP交O2于點D,連接DC、PC.
求證:DC2=DP•DA.精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)復(fù)習(xí)(第7章 直線與圓的方程):7.3 線性規(guī)劃(解析版) 題型:解答題

已知:如圖,O1與O2外切于點P,經(jīng)過O1上一點A作O1的切線交O2于B、C兩點,直線AP交O2于點D,連接DC、PC.
求證:DC2=DP•DA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年海南省、寧夏區(qū)高考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

已知:如圖,⊙O1與⊙O2外切于C點,AB一條外公切線,A、B分別為切點,連接AC、BC.設(shè)⊙O1的半徑為R,⊙O2的半徑為r,若tan∠ABC=,則 的值為( )

A.
B.
C.2
D.3

查看答案和解析>>

同步練習(xí)冊答案