【題目】

甲、乙、丙三名射擊運動員射中目標(biāo)的概率分別為,三人各射擊一次,擊中目標(biāo)的次數(shù)記為.

1)求的分布列及數(shù)學(xué)期望;

2)在概率(=0,1,2,3), 的值最大, 求實數(shù)的取值范圍.

【答案】1,ξ的分布列為

ξ

0

1

2

3

P

(1a)2

(1a2)

(2aa2)


2

【解析】

(1)P(ξ)“ξ個人命中,3ξ個人未命中的概率.其中ξ的可能取值為0、1、2、3.

P(ξ0)(1a)2(1a)2

P(ξ1)·(1a)2a(1a)(1a2);

P(ξ2)·a(1a)a2(2aa2);

P(ξ3)·a2.

所以ξ的分布列為

ξ

0

1

2

3

P

(1a)2

(1a2)

(2aa2)


ξ的數(shù)學(xué)期望為

E(ξ)(1a)2(1a2)(2aa2).

(2)P(ξ1)P(ξ0)[(1a2)(1a)2]a(1a)

P(ξ1)P(ξ2)[(1a2)(2aa2)];

P(ξ1)P(ξ3)[(1a2)a2].

0a1,得0a≤,即a的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)有且只有兩個零點,求實數(shù)的取值范圍;

2)設(shè)函數(shù)的兩個零點為,,且,求證.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是菱形,四邊形是矩形,平面平面,,的中點,為線段上的一點.

1)求證:;

2)若二面角的大小為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù)有下列四個結(jié)論:

是偶函數(shù);②的最小正周期為;③上單調(diào)遞增;④的值域為

上述結(jié)論中,正確的為(

A.③④B.②④C.①③D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某園林單位準備綠化一塊直徑為BC的半圓形空地,ABC外的地方種草,ABC的內(nèi)接正方形PQRS為一水池,其余的地方種花.若BCa,∠ABC,設(shè)ABC的面積為S1,正方形的面積為S2

(1)a表示S1S2;

(2)當(dāng)a固定,變化時,求取最小值時的角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)幼兒身心發(fā)展的特征,幼兒園通常著重在健康、科學(xué)、社會、語言、藝術(shù)五大領(lǐng)域?qū)τ變赫归_全方位的教育和培養(yǎng).經(jīng)調(diào)查發(fā)現(xiàn),一個幼兒除了在幼兒園進行五大領(lǐng)域的系統(tǒng)學(xué)習(xí)之外,還會報一些課外興趣班.而家長朋友們對于是否額外報這些課外興趣班的態(tài)度也是不一樣的.某調(diào)查機構(gòu)對某幼兒園的100名幼兒家長就孩子是否報課外興趣班的贊同程度進行調(diào)查統(tǒng)計,得到家長對幼兒報課外興趣班贊同度的頻數(shù)分布表:

贊同度

家長數(shù)

2

12

14

28

44

1)分別計算對幼兒報興趣班的贊同度不低于的家長比例和對幼兒報興趣班的贊同度低于的家長比例;

2)求家長對幼兒報興趣班的贊同度的平均數(shù)與方差的估計值.(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代替)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點為拋物線的焦點,過點任作兩條互相垂直的直線,分別交拋物線,,,四點,,分別為,的中點.

1)求證:直線過定點,并求出該定點的坐標(biāo);

2)設(shè)直線交拋物線,兩點,試求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】陜西關(guān)中的秦腔表演樸實,粗獷,細膩,深刻,再有電子布景的獨有特效,深得觀眾喜愛.戲曲相關(guān)部門特意進行了喜愛看秦腔調(diào)查,發(fā)現(xiàn)年齡段與愛看秦腔的人數(shù)比存在較好的線性相關(guān)關(guān)系,年齡在,,的愛看人數(shù)比分別是0.10,0.18,0.200.30.現(xiàn)用各年齡段的中間值代表年齡段,如42代表.由此求得愛看人數(shù)比關(guān)于年齡段的線性回歸方程為.那么,年齡在的愛看人數(shù)比為(

A.0.42B.0.39C.0.37D.0.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足,且

(1)求證:數(shù)列是等差數(shù)列,并求出數(shù)列的通項公式;

(2)求數(shù)列的前項和.

查看答案和解析>>

同步練習(xí)冊答案