甲、乙兩人各擲一次骰子(均勻的正方體,六個(gè)面上分別為l,2,3,4,5,6點(diǎn)),所得點(diǎn)數(shù)分別記為x、y,則x<y的概率為( 。
分析:所有的情況共有6×6=36種,其中滿足x=y的情況有6種,剩余的30種情況就是x<y和x>y的情況,各占總一半,故滿足x<y的情況有15種,由此求得x<y的概率
解答:解:所有的情況共有6×6=36種,其中滿足x=y的情況有6種,剩余的30種情況就是x<y和x>y的情況,
各占總一半,故滿足x<y的情況有
36-6
2
=15種,故x<y的概率為
15
36
=
5
12
,
故選C.
點(diǎn)評(píng):本題考查古典概型及其概率計(jì)算公式的應(yīng)用,求得滿足x<y的情況有
36-6
2
=15種,是解題的關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩人各擲一次骰子(均勻的正方體六個(gè)面上分別為l,2,3,4,5,6點(diǎn))所得點(diǎn)數(shù)分別為x,y.
(1)求x<y的概率;
(2)求5<x+y<10的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)不等式組
0≤x≤6
0≤y≤6
表示區(qū)域?yàn)锳,不等式組
0≤x≤6
x-y≥0
y≥0
,表示的區(qū)域?yàn)锽.
(1)在區(qū)域A中任取一點(diǎn)(x,y),求點(diǎn)(x,y)∈B的概率;
(2)若x,y分別表示甲、乙兩人各擲一次骰子所得的點(diǎn)數(shù),求點(diǎn)(x,y)在區(qū)域B中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)不等式組
0≤x≤6
0≤y≤6
表示的區(qū)域?yàn)镻,不等式組
0≤x≤6
x-2y≥0
表示的區(qū)域?yàn)镼.
(1)在區(qū)域P中任取一點(diǎn)(x,y),求點(diǎn)(x,y)∈Q的概率;
(2)若x,y分別表示甲、乙兩人各擲一次骰子所得的點(diǎn)數(shù),求點(diǎn)(x,y)∈Q的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆山東省萊蕪市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題

甲、乙兩人各擲一次骰子(均勻的正方體,六個(gè)面上分別為l,2,3,4,5,6點(diǎn)),所得點(diǎn)數(shù)分別記為,則的概率為

A.               B.               C.              D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案