已知p:存在x∈R,mx2+1≤0;q:對任意x∈R,x2+mx+1>0,若p或q為假,則實數(shù)m的取值范圍為(  )

A.m≤-2          B.m≥2

C.m≥2或m≤-2  D.-2≤m≤2

 

【答案】

B

【解析】解:若p真則m<0;

若q真,即x2+mx+1>0恒成立,

所以△=m2-4<0,

解得-2<m<2.

因為p或q為假命題,所以p,q全假.

所以有m≥0或m≤-2或m≥2

所以m≥2.故選B

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知p:存在x∈R,使mx2+1≤0;q:對任意x∈R,恒有x2+mx+1>0.若p或q為假命題,則實數(shù)m的取值范圍為(  )
A、m≥2B、m≤-2C、m≤-2,或m≥2D、-2≤m≤2

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年河北省衡水市冀州中學高三(下)開學數(shù)學試卷(理科)(解析版) 題型:選擇題

已知p:存在x∈R,使mx2+1≤0;q:對任意x∈R,恒有x2+mx+1>0.若p或q為假命題,則實數(shù)m的取值范圍為( )
A.m≥2
B.m≤-2
C.m≤-2,或m≥2
D.-2≤m≤2

查看答案和解析>>

科目:高中數(shù)學 來源:《集合與邏輯》2013年廣東省廣州大學附中高考數(shù)學二輪復習檢測(解析版) 題型:選擇題

已知p:存在x∈R,使mx2+1≤0;q:對任意x∈R,恒有x2+mx+1>0.若p或q為假命題,則實數(shù)m的取值范圍為( )
A.m≥2
B.m≤-2
C.m≤-2,或m≥2
D.-2≤m≤2

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年江西省九江市六校高三(下)4月聯(lián)考數(shù)學試卷(文科)(解析版) 題型:選擇題

已知p:存在x∈R,使mx2+1≤0;q:對任意x∈R,恒有x2+mx+1>0.若p或q為假命題,則實數(shù)m的取值范圍為( )
A.m≥2
B.m≤-2
C.m≤-2,或m≥2
D.-2≤m≤2

查看答案和解析>>

同步練習冊答案