二次函數(shù)y=f(x)對(duì)任意x∈R,有f(x+1)+f(x-1)=2x2-4x,求f(x)的解析式.
解:設(shè)f(x)=ax2+bx+c,(a≠0),由題意可得 a(x+1)2+b(x+1)+c+a(x-1)2+b(x-1)+c=2x2-4x, 即2ax2+2bx+(2a+2c)=2x2-4x,所以即 所以f(x)=x2-2x-1. 點(diǎn)評(píng):使用待定系數(shù)法,但有其自身的特點(diǎn),復(fù)雜的程度比一次的高,所以計(jì)算的時(shí)候準(zhǔn)確性要注意,不然即使方法正確,答案也容易錯(cuò). |
本題根據(jù)恒等式的特征進(jìn)行解題,所以在代入計(jì)算時(shí)要有足夠的耐心進(jìn)行計(jì)算,同時(shí)要保證計(jì)算的準(zhǔn)確性. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:必修一教案數(shù)學(xué)蘇教版 蘇教版 題型:044
如果二次函數(shù)y=f(x)的零點(diǎn)是-1和5(如圖),試比較f(-2)f(1),f(3)f(6)與0的大小關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:101網(wǎng)校同步練習(xí) 高三數(shù)學(xué) 蘇教版(新課標(biāo)·2004年初審) 蘇教版 題型:044
已知二次函數(shù)y=f(x)的圖像經(jīng)過(guò)坐標(biāo)原點(diǎn),其導(dǎo)函數(shù)為,數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(n,Sn)(n∈N*)均在函數(shù)y=f(x)的圖像上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè),Tn是數(shù)列(bn)的前n項(xiàng)和,求使得對(duì)所有n∈N*都成立的最小正整數(shù)m.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知二次函數(shù)y=f(x)的圖像經(jīng)過(guò)坐標(biāo)原點(diǎn),其導(dǎo)函數(shù)為f??(x)=6x-2,數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(n,Sn)(n∈N*)均在函數(shù)y=f(x)的圖像上.(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;(Ⅱ)設(shè)bn=,Tn是數(shù)列{bn}的前n項(xiàng)和,求使得Tn<對(duì)所有n∈N*都成立的最小正整數(shù)m;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆山東省高一暑假作業(yè)(一)數(shù)學(xué)試卷(解析版) 題型:解答題
已知二次函數(shù)y=f(x)(x∈R)的圖像是一條開口向下且對(duì)稱軸為x=3的拋物線,試比較大。
(1)f(6)與f(4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆湖南省高二上學(xué)期第一次階段性考試?yán)砜茢?shù)學(xué)試卷 題型:解答題
已知二次函數(shù)y=f(x)的圖像經(jīng)過(guò)坐標(biāo)原點(diǎn),其導(dǎo)函數(shù)為=6x-2,數(shù)列{}的前n項(xiàng)和為,點(diǎn)(n,)(n∈N*)均在函數(shù)y=f(x)的圖像上.(Ⅰ)求數(shù)列{}的通項(xiàng)公式;
(Ⅱ)設(shè),是數(shù)列{}的前n項(xiàng)和,求使得<對(duì)所有
n∈N*都成立的最小正整數(shù)m;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com