已知三棱錐P-ABC的所有棱長(zhǎng)都相等,現(xiàn)沿PA,PB,PC三條側(cè)棱剪開(kāi),將其表面展開(kāi)成一個(gè)平面圖形,若這個(gè)平面圖形外接圓的半徑為2
6
,則三棱錐P-ABC的內(nèi)切球的表面積為
 
考點(diǎn):球的體積和表面積
專(zhuān)題:計(jì)算題,空間位置關(guān)系與距離,球
分析:根據(jù)平面圖形外接圓的半徑求出三棱錐的棱長(zhǎng),再根據(jù)棱長(zhǎng)求出高,設(shè)內(nèi)切球的球心為O',半徑為r,連接三棱錐的四個(gè)頂點(diǎn)得到四個(gè)小三棱錐的體積相等,然后根據(jù)等積法計(jì)算得到半徑r,再由球的表面積公式計(jì)算即可得到.
解答: 解:根據(jù)題意幾何體為正三棱錐,如圖,設(shè)棱長(zhǎng)為a,
PD=
3
2
a,OD=
3
6
a,OP=
PD2-OD2
=
6
3
a.
則OD+PD=
3
6
a+
3
2
a=
2
3
3
a=2
6
⇒a=3
2

V棱錐=
1
3
×
3
4
a2×
6
3
a=9,
設(shè)內(nèi)切球的球心為O',半徑為r,
連接三棱錐的四個(gè)頂點(diǎn)得到四個(gè)小三棱錐的體積相等,
即為4×
1
3
×
3
4
a2r=
3
3
×18r=6
3
r.
由等積法,可得,9=6
3
r,
解得,r=
3
2

則內(nèi)切球的表面積為S=4πr2=3π.
故答案為:3π.
點(diǎn)評(píng):本題主要考查球的表面積的求法,考查等積法的運(yùn)用,考查三棱錐的體積公式的運(yùn)用,考查運(yùn)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,直線l過(guò)點(diǎn)P(1,2),O為坐標(biāo)原點(diǎn).
(1)若直線l在x軸和y軸上的截距相等,求l的方程;
(2)若直線l與x軸,y軸的正半軸分別交于A,B兩點(diǎn),當(dāng)△AOB面積最小時(shí),求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若不等式x2-kx+k>0對(duì)任意的x∈R恒成立,則實(shí)數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2sinxcosx+cos(2x-
π
6
)+cos(2x+
π
6
)
,x∈R.
(Ⅰ)求f(
π
12
)
的值;
(Ⅱ)求函數(shù)f(x)在區(qū)間[
π
2
,π]
上的最大值和最小值,及相應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:x2+y2-4x-2y-15=0上有四個(gè)不同的點(diǎn)到直線L:y=k(x-7)+6的距離等于
5
,則k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線x2-
y2
m
=1(m>0)的離心率是2,則m=
 
,以該雙曲線的右焦點(diǎn)為圓心且與其漸近線相切的圓的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線方程為x2-
y2
4
=1
,過(guò)P(1,2)的直線L與雙曲線只有一個(gè)公共點(diǎn),則L的條數(shù)共有( 。
A、4條B、3條C、2條D、1條

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足a1=1,an=λan-1+1,(λ≠1,n≥2且n∈N*).
(Ⅰ)求證:當(dāng)λ≠0時(shí),數(shù)列{an+
1
λ-1
}
為等比數(shù)列;
(Ⅱ)如果λ=2,求數(shù)列{nan}的前n項(xiàng)和Sn;
(Ⅲ)如果[an]表示不超過(guò)an的最大整數(shù),當(dāng)λ=
2
+1
時(shí),求數(shù)列{[(λ-1)an]}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,兩種坐標(biāo)系取相同的單位長(zhǎng)度.已知曲線C:ρsin2θ=2acosθ(a>0),過(guò)點(diǎn)P(-2,-4)的直線l的參數(shù)方程為
x=-2+
2
t
y=-4+
2
t.
(t為參數(shù)).直線l與曲線C分別交于M、N.若|PM|、|MN|、|PN|成等比數(shù)列,求實(shí)數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案