已知正項(xiàng)數(shù)列{an}中,a1=1,a2=2,2an2=an+12+an-12,則a6等( 。
A、16
B、4
C、2
2
D、45
考點(diǎn):數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:由2an2=an+12+an-12,(n≥2),得{an2}是等差數(shù)列,首項(xiàng)a12=1,公差為a22-a12=4-1=3,由此能求出
a
 
6
解答: 解:∵2an2=an+12+an-12,(n≥2),
{an2}是等差數(shù)列,首項(xiàng)a12=1,公差為a22-a12=4-1=3,
an2=1+3(n-1)=3n-2,
a62=3×6-2=16,
a
 
6
=4.
故選:B.
點(diǎn)評(píng):本題考查數(shù)列的第6項(xiàng)的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知O是△ABC所在平面內(nèi)一點(diǎn),且|
OC
|2+|
AB
|2=|
OB
|2+|
.
AC
|2=|
OA
|2+|
BC
|2,則O是△ABC的( 。
A、內(nèi)心B、垂心C、外心D、重心

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有四個(gè)男生和三個(gè)女生排成一排,按下列要求各有多少種不同的排法?甲不在排頭,乙不在排尾.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,AB=
3
,BC=3,AC=4,求AC邊上的中線BD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m>0,n>0,向量
a
=(1,1)
,向量
b
=(m,n-3)
,且
a
⊥(
a
+
b
)
,則
1
m
+
4
n
的最小值為( 。
A、9B、16C、18D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x
ex+m
,m∈R,e=2.71828…為自然對(duì)數(shù)的底數(shù).
(Ⅰ)若x=1是f(x)的極值點(diǎn),求m的值;
(Ⅱ)證明:當(dāng)0<a<b<1時(shí),bea+a<aeb+b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三個(gè)角∠A,∠B,∠C所對(duì)邊分別為a,b,c,分別解三角形(保留根號(hào)或精確到0.01)
(1)a=10,b=5,∠C═60°;
(2)a=3
6
,c=6,∠B=45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a2x=3,則
a3x+a-3x
ax+a-x
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一幾何體如圖所示,四邊形ABCD是等腰梯形,AB∥CD,∠DAB=60°.FC⊥平面ABCD,CB=CD=CEF=1.
(1)求證:AC⊥平面BCF;
(2)求二面角F-BD-C的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案