已知點P(4,4),圓C:與橢圓E:有一個公共點A(3,1),F(xiàn)1、F2分別是橢圓的左、右焦點,直線PF1與圓C相切.

(1)求m的值與橢圓E的方程;
(2)設Q為橢圓E上的一個動點,求的取值范圍.
(Ⅰ).(Ⅱ) [-12,0].

試題分析:(Ⅰ)點A代入圓C方程,

∵m<3,∴m=1.       2分
圓C:.設直線P的斜率為k,
則PF1:,即
∵直線P與圓C相切,∴
解得.      4分
當k=時,直線PF1與x軸的交點橫坐標為,不合題意,舍去.
當k=時,直線PF1與x軸的交點橫坐標為-4,
∴c=4.(-4,0),(4,0). 
2a=A+A,,a2=18,b2=2.
橢圓E的方程為:.    7分
(Ⅱ),設Q(x,y),,
.   9分
,即,
,∴-18≤6xy≤18.
的取值范圍是[0,36].
的取值范圍是[-6,6].
的取值范圍是[-12,0].  13分
點評:中檔題,研究直線與圓的位置關系,半徑、弦長一半、圓心到直線的距離所構成的“特征三角形”是重點,考查知識覆蓋面廣,對考生計算能力、數(shù)形結合思想有較好考查。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

已知拋物線的焦點為F,準線為l,點P為拋物線上一點,且,垂足為A,若直線AF的斜率為,則|PF|等于( )
A.B.4C.D.8

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是橢圓上的一點,為焦點,且,則 的面積為(   )
A.B.C.D.16

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線的頂點在原點,它的準線過雙曲線的一個焦點,并與雙曲線的實軸垂直,已知拋物線與雙曲線的交點為.
(1)求拋物線的方程;
(2)求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分10分) 已知在平面直角坐標系中的一個橢圓,它的中心在原點,左焦點為,且過,設點.
(1)求該橢圓的標準方程;
(2)若是橢圓上的動點,求線段中點的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知雙曲線的焦點為F1.F2,點M在雙曲線上且,則點M到x軸的距離為   (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓()中,成等比數(shù)列,則橢圓的離心率為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

求過兩直線的交點,且滿足下列條件的直線的方程.
(Ⅰ)和直線垂直;
(Ⅱ)在軸,軸上的截距相等.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
(1)焦點在x軸上的橢圓的一個頂點為A(2,0),其長軸長是短軸長的2倍,求橢圓的標準方程.
(2)已知雙曲線的一條漸近線方程是,并經(jīng)過點,求此雙曲線的標準方程.

查看答案和解析>>

同步練習冊答案