【題目】在三棱錐中, 是邊長(zhǎng)為的等邊三角形, , 分別是的中點(diǎn).

(1)求證: 平面;

(2)求證: 平面;

(3)求三棱錐的體積.

【答案】(1)見(jiàn)解析(2)見(jiàn)解析(3).

【解析】試題分析:(1)欲證OD∥平面PAC,根據(jù)直線(xiàn)與平面平行的判定定理可知只需證OD與平面PAC內(nèi)一直線(xiàn)平行,而OD∥PA,PA平面PAC,OD平面PAC,滿(mǎn)足定理?xiàng)l件; (2)欲證平面PAB⊥平面ABC,根據(jù)面面垂直的判定定理可知在平面PAB內(nèi)一直線(xiàn)與平面ABC垂直,而根據(jù)題意可得PO平面ABC;

(3)根據(jù)OP垂直平面ABC得到OP為三棱錐P-ABC的高,根據(jù)三棱錐的體積公式可求出三棱錐P-ABC的體積.又因?yàn)镈為PB中點(diǎn),所以高是PO的一半.

試題解析:(1)∵分別為的中點(diǎn),

.

平面, 平面

平面.

(2)連接,∵中點(diǎn), ,

.

同理, .

,

.

.

,

平面.

(3)由(2)可知平面,

為三棱錐的高,且.

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】圓C:(x﹣1)2+(y﹣2)2=25,直線(xiàn)l:(2m+1)x+(m+1)y﹣7m﹣4=0(m∈R).
(1)證明:不論m取什么數(shù),直線(xiàn)l與圓C恒交于兩點(diǎn);
(2)求直線(xiàn)l被圓C截得的線(xiàn)段的最短長(zhǎng)度,并求此時(shí)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 過(guò)點(diǎn),且離心率.

1)求橢圓的方程;

(2)若直線(xiàn)與橢圓交于不同的兩點(diǎn)且線(xiàn)段的垂直平分線(xiàn)過(guò)定點(diǎn),的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一位網(wǎng)民在網(wǎng)上光顧某網(wǎng)店,經(jīng)過(guò)一番瀏覽后,對(duì)該店鋪中的A,B,C三種商品有購(gòu)買(mǎi)意向.已知該網(wǎng)民購(gòu)買(mǎi)A種商品的概率為 ,購(gòu)買(mǎi)B種商品的槪率為 ,購(gòu)買(mǎi)C種商品的概率為 .假設(shè)該網(wǎng)民是否購(gòu)買(mǎi)這三種商品相互獨(dú)立
(1)求該網(wǎng)民至少購(gòu)買(mǎi)2種商品的概率;
(2)用隨機(jī)變量η表示該網(wǎng)民購(gòu)買(mǎi)商品的種數(shù),求η的槪率分布和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿(mǎn)足an+1=a ﹣nan+1,且a1=2.
(1)計(jì)算a2 , a3 , a4的值,由此猜想數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明;
(2)求證:2nn≤a <3nn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】劉徽(約公元 225 —295 年)是魏晉時(shí)期偉大的數(shù)學(xué)家,中國(guó)古典數(shù)學(xué)理論的奠基人之一,他的杰作《九章算術(shù)注》和《海島算經(jīng)》是中國(guó)寶貴的古代數(shù)學(xué)遺產(chǎn). 《九章算術(shù)·商功》中有這樣一段話(huà):斜解立方,得兩壍堵. 斜解壍堵,其一為陽(yáng)馬,一為鱉臑.” 劉徽注:此術(shù)臑者,背節(jié)也,或曰半陽(yáng)馬,其形有似鱉肘,故以名云.” 其實(shí)這里所謂的鱉臑(biē nào,就是在對(duì)長(zhǎng)方體進(jìn)行分割時(shí)所產(chǎn)生的四個(gè)面都為直角三角形的三棱錐. 如圖,在三棱錐中, 垂直于平面, 垂直于,且 ,則三棱錐的外接球的球面面積為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 的圖象過(guò)點(diǎn)(﹣1,2),且在點(diǎn)(﹣1,f(﹣1))處的切線(xiàn)與直線(xiàn)x﹣5y+1=0垂直.
(1)求實(shí)數(shù)b,c的值;
(2)求f(x)在[﹣1,e](e為自然對(duì)數(shù)的底數(shù))上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a>0,a≠1且loga3>loga2,若函數(shù)f(x)=logax在區(qū)間[a,2a]上的最大值與最小值之差為1.
(1)求a的值;
(2)解不等式 ;
(3)求函數(shù)g(x)=|logax﹣1|的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方體ABCD﹣A1B1C1D1中,M、N分別為棱C1D1、C1C的中點(diǎn),有以下四個(gè)結(jié)論: ①直線(xiàn)AM與CC1是相交直線(xiàn);
②直線(xiàn)AM與BN是平行直線(xiàn);
③直線(xiàn)BN與MB1是異面直線(xiàn);
④直線(xiàn)AM與DD1是異面直線(xiàn).
其中正確的結(jié)論為(注:把你認(rèn)為正確的結(jié)論的序號(hào)都填上).

查看答案和解析>>

同步練習(xí)冊(cè)答案