【題目】已知,是橢圓上的兩點(diǎn),線段的中點(diǎn)在直線.

1)當(dāng)直線的斜率存在時(shí),求實(shí)數(shù)的取值范圍;

2)設(shè)是橢圓的左焦點(diǎn),若橢圓上存在一點(diǎn),使,求的值.

【答案】(1);(2)

【解析】

1)設(shè)中點(diǎn),利用點(diǎn)差法得,由點(diǎn)在橢圓內(nèi)部得,即可求解k的范圍

2)向量坐標(biāo)化得,弦長公式得由點(diǎn)在橢圓上,得,進(jìn)而得AB方程,與橢圓聯(lián)立得,則可求

1)設(shè),,則,

兩式相減得:,

由線段的中點(diǎn)在直線上,可設(shè)此中點(diǎn),因?yàn)橹本的斜率存在,所以,

設(shè)其斜率為,由式得,即.

由于弦的中點(diǎn)必在橢圓內(nèi)部,則,解得.

,所以斜率的取值范圍為.

2)由(1)知,,因?yàn)闄E圓的左焦點(diǎn),

所以,,設(shè),則,

,

同理可得,因?yàn)辄c(diǎn)在橢圓上,所以

解得.當(dāng)時(shí),,直線的方程為,

代入,由根與系數(shù)關(guān)系得.

.

由對稱性知,當(dāng)時(shí)也成立,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的最大值為3,其圖象相鄰兩條對稱軸之間的距離為.

(Ⅰ)求函數(shù)的解析式和當(dāng)時(shí)的單調(diào)減區(qū)間;

(Ⅱ)的圖象向右平行移動(dòng)個(gè)長度單位,再向下平移1個(gè)長度單位,得到的圖象,用“五點(diǎn)法”作出內(nèi)的大致圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正四棱錐中,,,分別為,的中點(diǎn).

(1)求正四棱錐的全面積;

(2)若平面與棱交于點(diǎn),求平面與平面所成銳二面角的大。ㄓ梅慈呛瘮(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)[0,7]上有16兩個(gè)零點(diǎn),且函數(shù)與函數(shù)都是偶函數(shù),則[0,2019]上的零點(diǎn)至少有( )個(gè)

A.404B.406C.808D.812

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某調(diào)查機(jī)構(gòu)為了解人們某個(gè)產(chǎn)品的使用情況是否與性別有關(guān),在網(wǎng)上進(jìn)行了問卷調(diào)查,在調(diào)查結(jié)果中隨機(jī)抽取了50份進(jìn)行統(tǒng)計(jì),得到如下列聯(lián)表:

男性

女性

合計(jì)

使用

15

5

20

不使用

10

20

30

合計(jì)

25

25

50

1)請根據(jù)調(diào)查結(jié)果分①析:你有多大把握認(rèn)為使用該產(chǎn)品與性別有關(guān);

2)在不使用該產(chǎn)品的人中,按性別用分層抽樣抽取6人,再從這6人中隨機(jī)抽取2人參加某項(xiàng)活動(dòng),求這2人中恰有一位女性的概率.

附:

0.010

0.005

0.001

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和Sn2an1

1)求數(shù)列{an}的通項(xiàng)公式;

2)若數(shù)列{bn}滿足bnanlog2an+1,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,若存在三個(gè)不同實(shí)數(shù)使得,則的取值范圍是(

A.B.C.D.0,1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面四邊形中,,,,將三角形沿翻折到三角形的位置,平面平面中點(diǎn).

(Ⅰ)求證:;

(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,傾斜角為60°的直線與橢圓分別交于A、B兩點(diǎn)且,點(diǎn)C是橢圓上不同于A、B一點(diǎn),則△ABC面積的最大值為_____

查看答案和解析>>

同步練習(xí)冊答案