已知數(shù)列{an}的通項公式an=2n+1(n∈N*),其前n項和為Sn,則數(shù)列{
Sn
n
}的前10項的和為
 
考點:等差數(shù)列的性質
專題:計算題,等差數(shù)列與等比數(shù)列
分析:利用等差數(shù)列的求和公式,求出Sn,進而可得
Sn
n
=n+2,再利用等差數(shù)列的求和公式,即可得出結論.
解答: 解:∵數(shù)列{an}的通項公式an=2n+1,
∴Sn=
n(3+2n+1)
2
=n2+2n,
Sn
n
=n+2,
∴數(shù)列{
Sn
n
}的前10項的和為
10(3+12)
2
=75.
故答案為:75.
點評:本題考查等差數(shù)列的求和公式,考查學生的計算能力,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

化簡:(
1
tan
α
2
-tan
α
2
)•
1-cos2α
sin2α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式|x+1|+|x-1|≥a恒成立,則a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

空間直角坐標系中,A(1,0,2),B(t,2,-1),則線段AB長度的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設an是(1-
x
n的展開式中x項的系數(shù)(n=2,3,4,…),若bn=
an+1
(n+7)
a
 
n+2
,則bn的最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若等差數(shù)列{an}中,a8≥15,a9≤13,則a13的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知不等式
ax2+2x-3
ax-1
<0的解集為M,若2∉M,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=x3-3x在點(1,-2)處的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知i是虛數(shù)單位,則i2014=
 

查看答案和解析>>

同步練習冊答案