證明:平行六面體ABCD-A1B1C1D1中,對角線AC1,A1C,BD1,B1D相交于一點(diǎn),且互相平分.
考點(diǎn):分析法和綜合法
專題:作圖題,證明題,空間位置關(guān)系與距離
分析:在平行六面體ABCD-A1B1C1D1中,證明A1D1CB,ADC1B1,ACC1A1是平行四邊形即可.
解答: 證明:在平行六面體ABCD-A1B1C1D1中,
∵A1D1∥AD,AD∥BC,
∴A1D1∥BC,
又∵A1D1=AD,AD=BC,
∴A1D1=BC,
∴A1D1CB是平行四邊形,
故設(shè)對角線AC1與BD1相交于點(diǎn)E,
且E是AC1與BD1的中點(diǎn),
同理可證,
E是A1C,B1D的中點(diǎn),
故對角線AC1,A1C,BD1,B1D相交于一點(diǎn),且互相平分.
點(diǎn)評:本題考查了學(xué)生的空間想象力與作圖能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

同時(shí)擲兩枚硬幣,那么互為對立事件的是( 。
A、至少有1枚正面和恰好有1枚正面
B、恰好有1枚正面和恰好有2枚正面
C、最多有1枚正面和至少有2枚正面
D、至少有2枚正面和恰好有1枚正面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由曲線y2=2x與直線y=-x+4所圍成的封閉圖形的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解下列不等式:
(1)|
1
2
x+1|≥2;
(2)|8-x|≤3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:a*b=
a(a-b≤0)
b(a-b>0)
,當(dāng)正數(shù)p取何值時(shí),關(guān)于x的方程:
1
p
[(2x2-4x+2)*(x+2)]-2=0有三個(gè)不同的實(shí)數(shù)解?有兩個(gè)不同實(shí)數(shù)解?有唯一實(shí)數(shù)解?分別求出p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次項(xiàng)系數(shù)為正的二次函數(shù)f(x)對任意x∈R,都有f(1-x)=f(1+x)成立,設(shè)向量
a
=(sinx,2),
b
=(2sinx,
1
2
),
c
=(cos2x,1),
d
=(1,2),當(dāng)x∈[0,π]時(shí),求不等式f(
a
b
)>f(
c
d
)
的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)M=2t+it-1×2t-1+…+i1×2+i0,其中ik=0或1(k=0,1,2,…t-1,t∈N*),并記M(lit-1it-2…i1i02.對于給定的x1=(lit-1it-2…i1i02,構(gòu)造無窮數(shù)列{xh}如下:x2=(li0it-1it-2…i2i12,x3=(li1i0it-1…i3i22,x4=(li2i1it-1…i32
(1)若x1=27,則x4=
 
 (用數(shù)字作答);
(2)給定一個(gè)正整數(shù)m,若x1=22m+2+22m+1+2m+1,則滿足xn=x1(n∈N*),且n≠1)的n的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

隨著我國加入WTO,某企業(yè)決定從甲、乙兩種產(chǎn)品中選擇一種投資生產(chǎn),打入國際市場,已知投資生產(chǎn)這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如表:(單位:萬元)
年固定成品每件產(chǎn)品成本每件產(chǎn)品銷售價(jià)每件可最多生產(chǎn)件數(shù)
甲產(chǎn)品20a10200
乙產(chǎn)品40818120
其中年固定成本與年生產(chǎn)的件數(shù)無關(guān),a為常數(shù),且3≤a≤8.另外,年銷售x件乙產(chǎn)品時(shí)需上交0.05x2萬美元的特別關(guān)稅.
(Ⅰ)寫出該廠分別投資生產(chǎn)甲、乙兩產(chǎn)品的年利潤y1,y2與生產(chǎn)相應(yīng)產(chǎn)品的件數(shù)x(x∈N)之間的函數(shù)關(guān)系;
(Ⅱ)分別求出投資生產(chǎn)這兩種產(chǎn)品的最大年利潤;
(Ⅲ)如何決定投資可獲最大年利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=1,
a
b
夾角為
3
,|2
a
+
b
|=
7
,則|
b
|
等于( 。
A、1B、2C、3D、4

查看答案和解析>>

同步練習(xí)冊答案