設(shè)等比數(shù)列的首項為,公比為為正整數(shù)),且滿足的等差中項;數(shù)列滿足).
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)試確定的值,使得數(shù)列為等差數(shù)列;
(Ⅲ)當為等差數(shù)列時,對每個正整數(shù),在之間插入個2,得到一個新數(shù)列. 設(shè)是數(shù)列 的前項和,試求滿足的所有正整數(shù).
(Ⅰ);(Ⅱ)時,數(shù)列為等差數(shù)列;(Ⅲ)

試題分析:(Ⅰ)根據(jù)題意的等差中項,由等差中項不難得出三者的關(guān)系,又由為等比數(shù)列,回歸基本量即可求出公比的值,就可求出的通項公式; (Ⅱ)由數(shù)列滿足,可化簡求得的表達式,即,由(Ⅱ)中所給條件為等差數(shù)列,可想到它的前三項一定符合等差數(shù)列的要求,即滿足,可求出的值,這樣得到的表達式,通過等差數(shù)列的定義對所求表達式進行驗證,得出是一個等差數(shù)列;(Ⅲ)由題目在之間插入個2,即之間插入2k個2,這樣不難發(fā)現(xiàn)這個數(shù)列的前三項均為2,這顯然成立,推到一般情形去證明當時,等式左邊,右邊,化簡得,可根據(jù)特點可令函數(shù),可對其求導進行分析函數(shù)的單調(diào)性情況,發(fā)現(xiàn)最小值成立,從而就可得出符合題意的值.
試題解析:解:(Ⅰ)因為,所以
解得(舍),則        3分
,所以           5分
(Ⅱ)由,得
所以,
則由,得          8分
而當時,,由(常數(shù))知此時數(shù)列為等差數(shù)列    10分
(Ⅲ)因為,易知不合題意,適合題意    11分
時,若后添入的數(shù)2,則一定不適合題意,從而必是數(shù)列中的
某一項,則
所以,即      13分
,則,
因為
所以當時,,又,
從而,故在[3,遞增.
則由=0在[3,無解,
都不合題意  15分
綜上知,滿足題意的正整數(shù)僅有m=2           16分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知曲線,過上一點作一斜率為的直線交曲線于另一點,點列的橫坐標構(gòu)成數(shù)列,其中.
(1)求的關(guān)系式;
(2)令,求證:數(shù)列是等比數(shù)列;
(3)若為非零整數(shù),),試確定的值,使得對任意,都有成立.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知等比數(shù)列的前項和.設(shè)公差不為零的等差數(shù)列滿足:,且成等比.
(Ⅰ) 求
(Ⅱ) 設(shè)數(shù)列的前項和為.求使的最小正整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知等差數(shù)列的前項和為,若,則當最大時的值是(      )
A.8B.4C.5D.3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

等差數(shù)列中,公差,且,數(shù)列是等比數(shù)列,且         

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知數(shù)列的遞推公式,則    ;數(shù)列中第8個5是該數(shù)列的第    

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在數(shù)列中,若,,則該數(shù)列的通項________________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知是等差數(shù)列的前項和,且,則等于(   )
A.3B.5C.8D.15

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在等比數(shù)列中,,則       .

查看答案和解析>>

同步練習冊答案