甲和乙兩人約定凌晨在九龍廣場噴水池旁見面,約定誰先到后必須等10分鐘,這時若另一人還沒有來就可以離開.假設(shè)甲在0點到1點內(nèi)到達,且何時到達是等可能的,
(1)如果乙是0:40分到達,求他們能會面的概率;
(2)如果乙在0點到1點內(nèi)到達,且何時到達是等可能的,求他們能會面的概率.
考點:幾何概型
專題:概率與統(tǒng)計
分析:(1)由題意知本題是一個幾何概型,試驗發(fā)生包含的所有事件對應(yīng)的集合是Ω={x|0<x<60}做出集合對應(yīng)的線段,寫出滿足條件的事件對應(yīng)的集合和線段,根據(jù)長度之比得到概率.
(2)從0點開始計時,設(shè)甲經(jīng)過x分鐘到達,乙經(jīng)過y分鐘到達,可得x、y滿足的不等式線組對應(yīng)的平面區(qū)域為如圖的正方形OABC,而甲乙能夠見面,x、y滿足的平面區(qū)域是圖中的六邊形OEFBGH.分別算出圖中正方形和六邊形的面積,相除即可得到兩人能見面的概率.
解答: 解:(1)由題意知本題是一個幾何概型,
∵試驗發(fā)生包含的所有事件對應(yīng)的集合是Ω={x|0<x<60}
集合對應(yīng)的面積是長為60的線段,
而滿足條件的事件對應(yīng)的集合是A═{x|30<x<50}
得到 其長度為20
∴兩人能夠會面的概率是
20
60
=
1
3

(2)由題意知本題是一個幾何概型,該不等式對應(yīng)的平面區(qū)域是圖中的六邊形OEFBGH
∵S正方形OABC=60×60=3600,
S六邊形OEFBGH=S正方形OABC-2S△AEF=1100
因此,甲乙能見面的概率P=
S正方形OABC
S六邊形OEFBGH
=
11
36
點評:本題的難點是把時間分別用x,y坐標(biāo)來表示,從而把時間長度這樣的一維問題轉(zhuǎn)化為平面圖形的二維面積問題,轉(zhuǎn)化成面積型的幾何概型問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在空間平移正△ABC到△A1B1C1得到如圖所示的幾何體,若D是AC的中點,AA1⊥平面ABC,AA1:AB=
2
:1,則異面直線AB1與BD所成的角是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的偶函數(shù),f(x)滿足:對任意的x1,x2∈(-∞,0](x1≠x2),有(x1-x2)[f(x2)-f(x1)]>0,則當(dāng)n∈N*時,有(  )
A、f(-n)<f(n-1)<f(n+1)
B、f(n-1)<f(-n)<f(n+1)
C、f(n+1)<f(-n)<f(n-1)
D、f(n+1)<f(n-1)<f(-n)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=A sin(ωx+ϕ)(A>0,ω>0,|φ|<
π
2
)在一個周期內(nèi)的圖象如圖所示.
(1)求函數(shù)的解析式;
(2)設(shè)0<x<
π
2
,且方程f(x)=m有兩個不同的實數(shù)根,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,某市準(zhǔn)備在道路EF的一側(cè)修建一條運動比賽道,賽道的前一部分為曲線段FBC.該曲線段是函數(shù)y=Asin(ωx+
3
)(A>0,ω>0),x∈[-4,0]時的圖象,且圖象的最高點為B(-1,2),賽道的中間部分為長
3
千米的直線跑道CD,且CD∥EF;賽道的后一部分是以O(shè)為圓心的一段圓弧DE.
(1)求ω的值和∠DOE的大;
(2)若要在圓弧賽道所對應(yīng)的扇形ODE區(qū)域內(nèi)建一個“矩形草坪”,矩形的一邊在道路EF上,一個頂點在半徑OD上,另外一個頂點P在圓弧DE上,求“矩形草坪”面積的最大值,并求此時P點的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一組數(shù)據(jù)x1,x2,…,x8的值如表,則數(shù)據(jù)2x1+1,2x2+1,…,2x8+1的方差為
 

100999897101103102100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a-
2
2x+1

(1)判斷并說明函數(shù)的單調(diào)性;
(2)確定a的值,使f(x)為奇函數(shù)及此時f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=4x+
a
x
在區(qū)間[2,+∞)上是增函數(shù),則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
x+2y≤4
x-y≤1
x+2≥0
,則目標(biāo)函數(shù)z=3x-y的最大值為
 

查看答案和解析>>

同步練習(xí)冊答案