【題目】已知橢圓的離心率為,其左、右焦點(diǎn)為F1、F2,點(diǎn)P是坐標(biāo)平面內(nèi)一點(diǎn),且其中O為坐標(biāo)原點(diǎn)。
(I) 求橢圓C的方程;
(II) 如圖,過(guò)點(diǎn)S(0,},且斜率為k的動(dòng)直線l交橢圓于A、B兩點(diǎn),在y軸上是否存在定點(diǎn)M,使以AB為直徑的圓恒過(guò)這個(gè)點(diǎn)?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)
(2)在y軸上存在定點(diǎn)M,使得以AB為直徑的圓恒過(guò)這個(gè)點(diǎn),
點(diǎn)M的坐標(biāo)為(0,1)。
【解析】
(1)利用;(2)直線方程與橢圓方程,聯(lián)立方程組并借助于韋達(dá)定理,求點(diǎn)的坐標(biāo).
解:(1)設(shè),,① ……1分
又,,即② ……2分
①代入②得:. 又故所求橢圓方程為……4分
(2)設(shè)直線,代入,有.
設(shè),則. ……6分
若軸上存在定點(diǎn)滿足題設(shè),則,,
……9分
由題意知,對(duì)任意實(shí)數(shù)都有恒成立, ……10分
即對(duì)成立.
解得, ……11分
在軸上存在定點(diǎn),使以為直徑的圓恒過(guò)這個(gè)定點(diǎn). ……12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓長(zhǎng)軸是短軸的倍,且右焦點(diǎn)為.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)直線交橢圓于兩點(diǎn),若線段中點(diǎn)的橫坐標(biāo)為,求直線的方程及的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)證明:函數(shù)在區(qū)間上是減函數(shù);
(2)當(dāng)時(shí),證明:函數(shù)只有一個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱柱ABCD-A1B1C1D1中,CD∥AB, AB⊥BC,AB=BC=2CD=2,側(cè)棱AA1⊥平面ABCD.且點(diǎn)M是AB1的中點(diǎn)
(1)證明:CM∥平面ADD1A1;
(2)求點(diǎn)M到平面ADD1A1的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】古希臘時(shí)期,人們認(rèn)為最美人體的頭頂至肚臍的長(zhǎng)度與肚臍至足底的長(zhǎng)度之比是(≈0.618,稱為黃金分割比例),著名的“斷臂維納斯”便是如此.此外,最美人體的頭頂至咽喉的長(zhǎng)度與咽喉至肚臍的長(zhǎng)度之比也是.若某人滿足上述兩個(gè)黃金分割比例,且腿長(zhǎng)為105cm,頭頂至脖子下端的長(zhǎng)度為26 cm,則其身高可能是
A. 165 cmB. 175 cmC. 185 cmD. 190cm
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 的離心率為,,分別為的右頂點(diǎn)和上頂點(diǎn),且.
(Ⅰ)求橢圓的方程;
(Ⅱ)若,分別是軸負(fù)半軸,軸負(fù)半軸上的點(diǎn),且四邊形的面積為2,設(shè)直線和的交點(diǎn)為,求點(diǎn)到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的焦距為,離心率為,其右焦點(diǎn)為,過(guò)點(diǎn)作直線交橢圓于另一點(diǎn).
(Ⅰ)若,求的面積;
(Ⅱ)若過(guò)點(diǎn)的直線與橢圓相交于兩點(diǎn)、,設(shè)為上一點(diǎn),且滿足(為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率等于,它的一個(gè)頂點(diǎn)恰好是拋物線x2=8y的焦點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)直線x=﹣2與橢圓交于P,Q兩點(diǎn),A,B是橢圓上位于直線x=﹣2兩側(cè)的動(dòng)點(diǎn),若直線AB的斜率為,求四邊形APBQ面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com