已知函數(shù)f(x)=2x2-4的圖象上一點(1,-2)及附近一點(1+△x,-2+△y),則
△y
△x
=
 
考點:變化的快慢與變化率
專題:計算題,導數(shù)的概念及應用
分析:由題意-2+△y=f(1+△x)=2(1+△x)2-4,從而可得△y=4△x+2(△x)2;代入化簡即可.
解答: 解:∵-2+△y=f(1+△x)=2(1+△x)2-4
=2+4△x+2(△x)2-4
=-2+4△x+2(△x)2
△y
△x
=
4△x+2(△x)2
△x
=4+2△x;
故答案為:4+2△x.
點評:本題考查了變化的快慢表示及變化率,屬于基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

化簡:
(1)cos58°cos37°+cos32°cos53°;
(2)cos(α-β)cos(α+β)+sin(α-β)sin(α+β).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解不等式:x≥
x2-2x-a
x-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若橢圓x2+my2=1的離心率為
1
2
,則它的焦距為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P(1,2),在直線l:x-y+4=0上求一點Q,使得|OQ|+|PQ|(O是坐標原點)最小,并求這個最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若a,b為實數(shù),且b=
a2-1
+
1-a2
+a
a+1
,求-
a+b-3
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若實數(shù)a,b,c滿足a2b2+(a2+b2)c2+c4=4,則ab+c2的最大值為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果等差數(shù)列{an}中,a3+a4+a5=12,那么a1+a2+…a7=( 。
A、14B、21C、28D、35

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圓心在拋物線y2=2x上,且與該拋物線的準線和x軸都相切的圓的方程是
 

查看答案和解析>>

同步練習冊答案