在如圖的直三棱柱中,,點(diǎn)是的中點(diǎn).
(1)求證:∥平面;
(2)求異面直線與所成的角的余弦值;
(3)求直線與平面所成角的正弦值;
(1)建立空間直角坐標(biāo)系,利用向量證明,進(jìn)而用線面平行的判定定理即可證明;
(2)
(3)
【解析】
試題分析:因?yàn)橐阎比庵牡酌嫒叿謩e是3、4、5,
所以兩兩互相垂直,
如圖以為坐標(biāo)原點(diǎn),直線分別為軸、軸、軸
建立空間直角標(biāo)系, ……2分
則,,.
(1)設(shè)與的交點(diǎn)為,連接,則
則
∴∥, ∵內(nèi),平面
∴∥平面 ; ……4分
(2)∵ ∴,
. ……6分
∴;
∴所求角的余弦值為 . ……8分
(3)設(shè)平面的一個(gè)法向量,則有:
,解得,. ……10分
設(shè)直線與平面所成角為. 則,
所以直線與平面所成角的正弦值為. ……12分
(其它方法仿此酌情給分)
考點(diǎn):本小題主要考查線面平行,異面直線所成的角和線面角.
點(diǎn)評(píng):解決立體幾何問(wèn)題,可以用判定定理和性質(zhì)定理,也可以建立空間直角坐標(biāo)系用向量方法證明,但是用向量方法時(shí),也要依據(jù)相應(yīng)的判定定理和性質(zhì)定理,定理中需要的條件要一一列舉出來(lái),一個(gè)也不能少.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年濰坊市六模) (12分) 如圖,直三棱柱中,底面是以∠ABC為直角的等腰直角三角形,
AC=2a,=3a,D為的中點(diǎn),E為的中點(diǎn).
。1)求直線BE與所成的角;
(2)在線段上是否存在點(diǎn)F,使CF⊥平面,若存在,求出;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆江蘇省江陰市高二上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,直三棱柱中,、分別是棱、的中點(diǎn),點(diǎn)在棱上,已知,,.
(1)求證:平面;
(2)設(shè)點(diǎn)在棱上,當(dāng)為何值時(shí),平面平面?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年河北省唐山市高三第二次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
如圖,直三棱柱中,AB=BC,,Q是AC上的點(diǎn),AB1//平面BC1Q.
(Ⅰ)確定點(diǎn)Q在AC上的位置;
(Ⅱ)若QC1與平面BB1C1C所成角的正弦值為,求二面角Q-BC1—C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆江蘇省高二下期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,直三棱柱中, ,. 分別為棱的中點(diǎn).
(1)求二面角的平面角的余弦值;
(2)在線段上是否存在一點(diǎn),使得平?
若存在,確定其位置;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com