已知圓C:x2+y2=4.直線l過點P(1,2),且與圓C交于A、B兩點,若|AB|=2 
3
,則直線l的方程
x=1,或3x-4y+5=0
x=1,或3x-4y+5=0
分析:分類討論:①當直線l垂直于x軸時,求得直線l的方程,并檢驗.②若直線l不垂直于x軸時,設其方程為y-2=k(x-1),結合直線與圓的位置關系,利用弦長公式即可求得k值,從而解決問題.
解答:解:①當直線l垂直于x軸時,
則此時直線方程為x=1,l與圓的兩個交點坐標為 (1,
3
),和 (1,-
3
),其距離為2
3
,滿足題意.
②若直線l不垂直于x軸,設其方程為y-2=k(x-1),即kx-y-k+2=0,
設圓心到此直線的距離為d,則2
3
=2
4-d2
,解得d=1,∴1=
|0-0-k+2|
k2+1
,k=
3
4
,
故此時直線l的方程為
3
4
x-y-
3
4
+2=0,即 3x-4y+5=0,
故答案為 x=1,或3x-4y+5=0.
點評:本題主要考查直線的一般式方程、直線和圓的方程的應用等基礎知識,考查運算求解能力,考查化歸與轉化思想,
屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知圓C:x2+y2-6x-4y+8=0.以圓C與坐標軸的交點分別作為雙曲線的一個焦點和頂點,則適合上述條件雙曲線的標準方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)一個圓與x軸相切,圓心在直線3x-y=0上,且被直線x-y=0所截得的弦長為2
7
,求此圓方程.
(2)已知圓C:x2+y2=9,直線l:x-2y=0,求與圓C相切,且與直線l垂直的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•普陀區(qū)一模)如圖,已知圓C:x2+y2=r2與x軸負半軸的交點為A.由點A出發(fā)的射線l的斜率為k,且k為有理數(shù).射線l與圓C相交于另一點B.
(1)當r=1時,試用k表示點B的坐標;
(2)當r=1時,試證明:點B一定是單位圓C上的有理點;(說明:坐標平面上,橫、縱坐標都為有理數(shù)的點為有理點.我們知道,一個有理數(shù)可以表示為
qp
,其中p、q均為整數(shù)且p、q互質)
(3)定義:實半軸長a、虛半軸長b和半焦距c都是正整數(shù)的雙曲線為“整勾股雙曲線”.
當0<k<1時,是否能構造“整勾股雙曲線”,它的實半軸長、虛半軸長和半焦距的長恰可由點B的橫坐標、縱坐標和半徑r的數(shù)值構成?若能,請嘗試探索其構造方法;若不能,試簡述你的理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•瀘州一模)已知圓C:x2+y2=r2(r>0)與拋物線y2=40x的準線相切,若直線l:
x
a
y
b
=1
與圓C有公共點,且公共點都為整點(整點是指橫坐標.縱坐標都是整數(shù)的點),那么直線l共有( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C:x2+y2=4與直線L:x+y+a=0相切,則a=(  )

查看答案和解析>>

同步練習冊答案