已知cosα=-
1
5
,sinα=
2
6
5
,那么α的終邊所在的象限為( 。
A、第一象限B、第二象限
C、第三象限D、第四象限
考點:三角函數(shù)值的符號
專題:三角函數(shù)的求值
分析:根據題意和“一全正二正弦三正切四余弦”判斷出α的終邊所在的象限即可.
解答: 解:由cosα=-
1
5
<0得,α的終邊在第二或第三象限,
由sinα=
2
6
5
>0得,α的終邊在第一或第二象限,
所以α的終邊在第二象限,
故選:B.
點評:本題考查了三角函數(shù)值的符號,即利用口訣:一全正二正弦三正切四余弦判斷角所在的象限.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知命題p:關于x的不等式mx2+mx+1>0對任意x∈R恒成立;命題q:函數(shù)f(x)=x3+mx2+3x+2存在單調遞減區(qū)間;若“p∨q”為真命題,“p∧q”為假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=2-
a
x
(a為實數(shù)).
(Ⅰ)當a=1時,求函數(shù)ϕ(x)=f(x)-g(x)的最小值;
(Ⅱ)若方程e2f(x)=1.5g(x)(其中e為自然對數(shù)的底數(shù))在區(qū)間[0.5,2]上有解,求實數(shù)a的取值范圍;
(Ⅲ)若u(x)=f(x)+x2+2mx,當y=u(x)存在兩個極值時,求m的取值范圍,并證明兩個極值之和小于
Tn=
(2n-1)•3n-1
2
,n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,A=
π
6
,B=
2
3
π,b=12,則a=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=1+cosx,則f′(x)
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若非零向量
a
,
b
,滿足|
a
+
b
|=|
b
|
,
a
⊥(
a
b
)
,則λ=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某車間將10名技工平均分為甲、乙兩組來加工某種零件,在單位時間內每個技工加工零件若干個,其中合格零件的個數(shù)如表:
1號2號3號4號5號
甲組457910
乙組56789
(1)分別求出甲、乙兩組技工在單位時間內完成合格零件的平均數(shù)及方差,并由此分析兩組  技工的技術水平;
(2)評審組從該車間甲、乙兩組中各隨機抽取1名技工,對其加工的零件進行檢測,若兩人完成合格零件個數(shù)之和超過14件,則稱該車間“生產率高效”,求該車間“生產率高效”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:|2x-3|>1,命題q:log
1
2
(x2+x-5)<0,則?p是?q的( 。l件.
A、充分不必要
B、必要不充分
C、充要
D、既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)集P={x|x=2k-1,k∈Z},Q={x|x=4k-1,k∈Z},則P、Q之間的關系為( 。
A、P=QB、P⊆Q
C、P?QD、P與Q不存在包含關系

查看答案和解析>>

同步練習冊答案