已知tanα=3,求sinα•cosα的值.
考點(diǎn):三角函數(shù)的化簡(jiǎn)求值
專題:三角函數(shù)的求值
分析:將所求關(guān)系式轉(zhuǎn)化為
tanα
tan2α+1
,再將tanα=3代入計(jì)算即可.
解答: 解:∵tanα=3,
∴sinα•cosα=
sinα•cosα
sin2α+cos2α
=
tanα
tan2α+1
=
3
9+1
=
3
10
點(diǎn)評(píng):本題考查同角三角函數(shù)基本關(guān)系的運(yùn)用,弦化切是關(guān)鍵,考查運(yùn)算求解能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-
2
2x+1
,a∈R.判斷函數(shù)f(x)的奇偶性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)連續(xù),且f(x)=x-
1
0
f(x)dx,求函數(shù)f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)證明:當(dāng)x>1,2lnx<x-
1
x

(Ⅱ)若不等式(1+
a
t
)ln(1+t)>a對(duì)任意的正實(shí)數(shù)t恒成立,求正實(shí)數(shù)a的取值范圍
(Ⅲ)求證:(
9
10
19
1
e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知z=a(1+i)-(2+3i)為純虛數(shù),a為實(shí)數(shù),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正實(shí)數(shù)a,b,c滿足a+b+c=1,
1
a
+
1
b
+
1
c
=10,則abc的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

寫出數(shù)列的一個(gè)通項(xiàng)公式,使它的前4項(xiàng)分別是下列各數(shù):
(1)
1
2
,
3
4
,
5
8
,
7
16
;
(2)1+
1
22
,1-
3
42
,1+
5
62
,1-
7
82
;
(3)7,77,777,7777;
(4)0,
2
,0,
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校學(xué)生參加了“鉛球”和“立定跳遠(yuǎn)”兩個(gè)科目的體能測(cè)試,每個(gè)科目的成績(jī)分為A,B,C,D,E五個(gè)等級(jí),分別對(duì)應(yīng)5分,4分,3分,2分,1分,該校某班學(xué)生兩科目測(cè)試成績(jī)的數(shù)據(jù)統(tǒng)計(jì)如圖所示,其中“鉛球”科目的成績(jī)?yōu)镋的學(xué)生有8人.

(Ⅰ)求該班學(xué)生中“立定跳遠(yuǎn)”科目中成績(jī)?yōu)锳的人數(shù);
(Ⅱ)若該班共有10人的兩科成績(jī)得分之和大于7分,其中有2人10分,2人9分,6人8分.從這10人中隨機(jī)抽取兩人,求兩人成績(jī)之和ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

規(guī)定函數(shù)y=f(x)圖象上的點(diǎn)到坐標(biāo)原點(diǎn)距離的最小值叫做函數(shù)y=f(x)的“中心距離”,給出以下四個(gè)命題:
①函數(shù)y=
1
x
的“中心距離”大于1;
②函數(shù)y=
-x2-4x+5
的“中心距離”大于1;
③若函數(shù)y=f(x)(x∈R)與y=g(x)(x∈R)的“中心距離”相等,則函數(shù)h(x)=f(x)-g(x)至少有一個(gè)零點(diǎn).
以上命題是真命題的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案