某超市為了解顧客的購物量及結(jié)算時間等信息,安排一名員工隨機收集了在該超市購物的100位顧客的相關(guān)數(shù)據(jù),如下表所示.

一次購物量

1至4件

5至8件

9至12件

13至16件

17件及以上

顧客數(shù)(人)

x

30

25

y

10

結(jié)算時間(分鐘/人)

1

1.5

2

2.5

3

已知這100位顧客中一次購物量超過8件的顧客占55%.

(Ⅰ)確定x,y的值,并求顧客一次購物的結(jié)算時間X的分布列與數(shù)學期望;

(Ⅱ)若某顧客到達收銀臺時前面恰有2位顧客需結(jié)算,且各顧客的結(jié)算相互獨立,求該顧客結(jié)算前的等候時間不超過2.5分鐘的概率.

(注:將頻率視為概率)

 

【答案】

(Ⅰ)x=15,y=20.

X

1

1.5

2

2.5

3

P

E(X)=1.9;(Ⅱ)

【解析】

試題分析:(Ⅰ)根據(jù)總?cè)藬?shù)有100人,則,由100位顧客中一次購物量超過8件的顧客占55%,則知.根據(jù)這兩式得x=15,y=20,由表格可得X的可以取值為:1,1.5,2,2.5,3;該超市所有顧客一次購物的結(jié)算時間組成一個總體,所收集的100位顧客一次購物的結(jié)算時間可視為總體的一個容量為100的簡單隨機樣本,將頻率視為概率,即可得到分布列與期望.

(Ⅱ)由于該客到達收銀臺時前面恰有2位顧客需結(jié)算,則該顧客結(jié)算前的等候時間不超過2.5分鐘的情況為(1、1),(1、1.5),(1.5、1)三種情況,則按照各顧客的結(jié)算相互獨立,有

P(A)=P(X1=1)×P(X2=1)+P(X1=1)×P(X2=1.5)+P(X1=1.5)×P(X2=1)

×××

試題解析:(Ⅰ)由已知,得25+y+10=55,x+30=45,所以x=15,y=20.

該超市所有顧客一次購物的結(jié)算時間組成一個總體,所收集的100位顧客一次購物的結(jié)算時間可視為總體的一個容量為100的簡單隨機樣本,將頻率視為概率得

P(X=1)=,P(X=1.5)=,P(X=2)=,

P(X=2.5)=,P(X=3)=

X的分布列為

X

1

1.5

2

2.5

3

P

X的數(shù)學期望為

E(X)=1×+1.5×+2×+2.5×+3×=1.9.

(Ⅱ)記A為事件“該顧客結(jié)算前的等候時間不超過2.5分鐘”,Xi(i=1,2)為該顧客前面第i位顧客的結(jié)算時間,則

P(A)=P(X1=1且X2=1)+P(X1=1且X2=1.5)+P(X1=1.5且X2=1).

由于各顧客的結(jié)算相互獨立,且X1,X2的分布列都與X的分布列相同,所以

P(A)=P(X1=1)×P(X2=1)+P(X1=1)×P(X2=1.5)+P(X1=1.5)×P(X2=1)

×××

故該顧客結(jié)算前的等候時間不超過2.5分鐘的概率為

考點:1.離散型隨機變量的分布列與數(shù)學期望;2.以及相互獨立事件的概率的求法.

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•湖南)某超市為了解顧客的購物量及結(jié)算時間等信息,安排一名員工隨機收集了在該超市購物的100位顧客的相關(guān)數(shù)據(jù),如下表所示.
一次購物量 1至4件 5至8件 9至12件 13至16件 17件以上
顧客數(shù)(人) x 30 25 y 10
結(jié)算時間(分鐘/人 1 1.5 2 2.5 3
已知這100位顧客中的一次購物量超過8件的顧客占55%.
(Ⅰ)確定x,y的值,并估計顧客一次購物的結(jié)算時間的平均值;
(Ⅱ)求一位顧客一次購物的結(jié)算時間不超過2分鐘的概率.(將頻率視為概率)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•湖南)某超市為了解顧客的購物量及結(jié)算時間等信息,安排一名員工隨機收集了在該超市購物的100位顧客的相關(guān)數(shù)據(jù),如下表所示.
一次性購物量 1至4件 5 至8件 9至12件 13至16件 17件及以上
顧客數(shù)(人) x 30 25 y 10
結(jié)算時間(分鐘/人) 1 1.5 2 2.5 3
已知這100位顧客中的一次購物量超過8件的顧客占55%.
(Ⅰ)確定x,y的值,并求顧客一次購物的結(jié)算時間X的分布列與數(shù)學期望;
(Ⅱ)若某顧客到達收銀臺時前面恰有2位顧客需結(jié)算,且各顧客的結(jié)算相互獨立,求該顧客結(jié)算前的等候時間不超過2.5分鐘的概率.(注:將頻率視為概率)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某超市為了解顧客的購物量及結(jié)算時間等信息,安排一名員工隨機收集了在該超市購物的50位顧客的相關(guān)數(shù)據(jù),如下表所示:
一次購物量n(件) 1≤n≤3 4≤n≤6 7≤n≤9 10≤n≤12 n≥13
顧客數(shù)(人) x 20 10 5 y
結(jié)算時間(分鐘/人) 0.5 1 1.5 2 2.5
已知這50位顧客中一次購物量少于10件的顧客占80%.
(1)確定x與y的值;
(2)若將頻率視為概率,求顧客一次購物的結(jié)算時間X的分布列與數(shù)學期望;
(3)在(2)的條件下,若某顧客到達收銀臺時前面恰有2位顧客需結(jié)算,且各顧客的結(jié)算相互獨立,求該顧客結(jié)算前的等候時間不超過2分鐘的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆廣東省廣州市越秀區(qū)高三上學期摸底考試理科數(shù)學試卷(解析版) 題型:解答題

某超市為了解顧客的購物量及結(jié)算時間等信息,安排一名員工隨機收集了在該超市購物的50位顧客的相關(guān)數(shù)據(jù),如下表所示:

一次購物量(件)

1≤n≤3

4≤n≤6

7≤n≤9

10≤n≤12

n≥13

顧客數(shù)(人)

20

10

5

結(jié)算時間(分鐘/人)

0.5

1

1.5

2

2.5

已知這50位顧客中一次購物量少于10件的顧客占80%.

(1)確定的值;

(2)若將頻率視為概率,求顧客一次購物的結(jié)算時間的分布列與數(shù)學期望;

(3)在(2)的條件下,若某顧客到達收銀臺時前面恰有2位顧客需結(jié)算,且各顧客的結(jié)算相互獨立,求該顧客結(jié)算前的等候時間不超過2分鐘的概率.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆福建高二下第一次月考理科數(shù)學試卷(解析版) 題型:解答題

某超市為了解顧客的購物量及結(jié)算時間等信息,安排一名員工隨機收集了在該超市購物的100位顧客的相關(guān)數(shù)據(jù),如下表所示.

一次購物量

1至4件

5至8件

9至12件

13至16件

17件及以上

顧客數(shù)(人)

30

25

10

結(jié)算時間(分鐘/人)

1

1.5

2

2.5

3

已知這100位顧客中的一次購物量超過8件的顧客占55%.

(1)確定的值,并求顧客一次購物的結(jié)算時間的分布列與數(shù)學期望;

(2)若某顧客到達收銀臺時前面恰有2位顧客需結(jié)算,且各顧客的結(jié)算相互獨立,求該顧客結(jié)算前的等候時間不超過分鐘的概率.(注:將頻率視為概率)

 

查看答案和解析>>

同步練習冊答案