6.下列說法正確的是(  )
A.頻率是概率
B.隨著試驗次數(shù)增加,頻率一般會越接近概率
C.頻率是客觀存在的與試驗次數(shù)無關(guān)
D.隨機(jī)事件的概率總是在(0,1)內(nèi)

分析 利用概率和頻率的定義求解.

解答 解:在A中,當(dāng)試驗次數(shù)不足夠多時,頻率和概率是有誤差的,故A錯誤;
在B中,由頻率和概率的定義得隨著試驗次數(shù)增加,頻率一般會越接近概率,故B正確;
在C中,頻率與試驗次數(shù)有關(guān),故B錯誤;
在D中,隨機(jī)事件的概率總是在[0,1]內(nèi),故D錯誤.
故選:B.

點(diǎn)評 本題考查命題真假的判斷,是基礎(chǔ)題,解題時要認(rèn)真審題,注意頻率和概率的定義和合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知曲線C的極坐標(biāo)方程為ρ=2cosθ-4sinθ.以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+t}\\{y=-1+t}\end{array}\right.$(t為參數(shù)).
(1)判斷直線l與曲線C的位置關(guān)系,并說明理由;
(2)若直線l和曲線C相交于A,B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個頂點(diǎn)為A(2,0),離心率為$\frac{\sqrt{2}}{2}$.直線y=k(x-1)與橢圓C交于不同的兩點(diǎn)M,N.
(1)求橢圓C的方程;  
(2)當(dāng)△AMN的面積為$\frac{4\sqrt{7}}{9}$時,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在△ABC中,AB=2,AC=1,∠BAC=120°,AH為△ABC的高線,則$\overrightarrow{AB}$•$\overrightarrow{AH}$=( 。
A.$\frac{\sqrt{21}}{7}$B.$\frac{1}{7}$C.$\frac{3}{7}$D.$\frac{4}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖所示的程序框圖輸出的所有點(diǎn)都在函數(shù)( 。┑膱D象上
A.y=x+1B.y=2xC.y=2xD.y=2x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=x3+mx+$\frac{1}{4}$,g(x)=-lnx,min{a,b}表示a,b中的最小值,若函數(shù)h(x)=min{f(x),g(x)}(x>0)恰有三個零點(diǎn),則實數(shù)m的取值范圍是(-$\frac{5}{4}$,-$\frac{3}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知D為△ABC的邊AB上的一點(diǎn),且$\overrightarrow{CD}$=$\frac{1}{3}$$\overrightarrow{AC}$+λ•$\overrightarrow{BC}$,則實數(shù)λ的值為( 。
A.$\frac{2}{3}$B.$-\frac{2}{3}$C.$\frac{4}{3}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個頂點(diǎn)為A(0,1),離心率為$\frac{\sqrt{2}}{2}$,過點(diǎn)B(0,-2)及左焦點(diǎn)F1的直線交橢圓于C,D兩點(diǎn),右焦點(diǎn)為F2
(1)求橢圓的方程;
(文科)(2)求弦長CD.
(理科)(2)求△CDF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}={1^{\;}}({a,b>0})$的左、右焦點(diǎn)分別為F1,F(xiàn)2,過F2的直線與雙曲線C的右支相交于P,Q兩點(diǎn),若$\overrightarrow{P{F_2}}=3\overrightarrow{{F_2}Q}$,若△PQF1是以Q為頂角的等腰三角形,則雙曲線的離心率e=( 。
A.3B.2C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊答案