在直四棱柱ABCD-A1B1C1D1中,AA1=2,底面是邊長(zhǎng)為1的正方形,E、F分別是棱B1B、DA的中點(diǎn).
(1)求二面角D1-AE-C的大小;
(2)求證:直線BF∥平面AD1E.
(1)90°(2)見(jiàn)解析
(1)解:以D為坐標(biāo)原點(diǎn),DA、DC、DD1分別為x、y、z軸建立空間直角坐標(biāo)系如圖.

則相應(yīng)點(diǎn)的坐標(biāo)分別為D1(0,0,2),A(1,0,0),C(0,1,0),E(1,1,1),∴=(0,0,2)-(1,1,1)=(-1,-1,1),
=(1,1,1)-(1,0,0)=(0,1,1),
=(0,1,0)-(1,0,0)=(-1,1,0).
設(shè)平面AED1、平面AEC的法向量分別為m=(a,b,1),n=(c,d,1).


m=(2,-1,1),n=(-1,-1,1),∴cosm,n==0,
∴二面角D1AEC的大小為90°.
(2)證明:取DD1的中點(diǎn)G,連結(jié)GB、GF.

∵E、F分別是棱BB1、AD的中點(diǎn),
∴GF∥AD1,BE∥D1G且BE=D1G,
∴四邊形BED1G為平行四邊形,∴D1E∥BG.
又D1E、D1A平面AD1E,BG、GF∥平面AD1E,
∴BG∥平面AD1E,GF∥平面AD1E.
∵GF、GB平面BGF,∴平面BGF∥平面AD1E.
∵BF平面AD1E,∴直線BF∥平面AD1E.
(或者:建立空間直角坐標(biāo)系,用空間向量來(lái)證明直線BF∥平面AD1E,亦可)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四棱錐中,底面為平行四邊形,,⊥底面
 
(1)證明:平面平面;
(2)若二面角,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,在Rt中, D、E分別是上的點(diǎn),且,將沿折起到的位置,使,如圖2.

(1)求證:平面平面;
(2)若,求與平面所成角的余弦值;
(3)當(dāng)點(diǎn)在何處時(shí),的長(zhǎng)度最小,并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,平面平面,是以為斜邊的等腰直角三角形,分別為,,的中點(diǎn),,.

(1)設(shè)的中點(diǎn),證明:平面;
(2)證明:在內(nèi)存在一點(diǎn),使平面,并求點(diǎn),的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,三棱柱ABC-A1B1C1的所有棱長(zhǎng)都是2,又AA1⊥平面ABC,D,E分別是AC,CC1的中點(diǎn).

(1)求證:AE⊥平面A1BD.
(2)求二面角D-BA1-A的余弦值.
(3)求點(diǎn)B1到平面A1BD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在直角梯形中,,,,如圖,把沿翻折,使得平面平面

(1)求證:;
(2)若點(diǎn)為線段中點(diǎn),求點(diǎn)到平面的距離;
(3)在線段上是否存在點(diǎn),使得與平面所成角為?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱錐中,底面為矩形,側(cè)棱底面,,的中點(diǎn).
 
(1)求直線所成角的余弦值;
(2)在側(cè)面內(nèi)找一點(diǎn),使,并求出點(diǎn)的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)A1、A2、A3、A4、A5是空間中給定的5個(gè)不同的點(diǎn),則使=0成立的點(diǎn)M的個(gè)數(shù)為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在正方體ABCDA1B1C1D1中,點(diǎn)E為BB1的中點(diǎn),則平面A1ED與平面ABCD所成的銳二面角的余弦值為_(kāi)_______.

查看答案和解析>>

同步練習(xí)冊(cè)答案