求函數(shù)y=
x2-2x+2
+
x2-10x+29
的最小值.
考點(diǎn):函數(shù)的最值及其幾何意義
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:函數(shù)y=
x2-2x+2
+
x2-10x+29
=
(x-1)2+(0-1)2
+
(x-5)2+(0-2)2
,表示x軸上動(dòng)點(diǎn)P(x,0)到定點(diǎn)A(1,1)和B(5,2)的距離之和,利用對(duì)稱法,將問(wèn)題轉(zhuǎn)化為平面上兩點(diǎn)之間線段最短,可得答案.
解答: 解:∵函數(shù)y=
x2-2x+2
+
x2-10x+29
=
(x-1)2+(0-1)2
+
(x-5)2+(0-2)2
,
表示x軸上動(dòng)點(diǎn)P(x,0)到定點(diǎn)A(1,1)和B(5,2)的距離之和,
作點(diǎn)A(1,1)關(guān)于x軸的對(duì)稱點(diǎn)A′(1,-1),
則動(dòng)點(diǎn)P(x,0)到定點(diǎn)A(1,1)和B(5,2)的距離之和,
即動(dòng)點(diǎn)P(x,0)到定點(diǎn)A′(1,-1)和B(5,2)的距離之和,
當(dāng)A′,P,B三點(diǎn)共線時(shí),距離和最小,
∵|A′B|=
(5-1)2+(2+1)2
=5,
故函數(shù)y=
x2-2x+2
+
x2-10x+29
的最小值為5.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)的最值及其幾何意義,其中分析出函數(shù)y=
x2-2x+2
+
x2-10x+29
,表示x軸上動(dòng)點(diǎn)P(x,0)到定點(diǎn)A(1,1)和B(5,2)的距離之和,是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

奇函數(shù)f(x)(x≠0)在(0,+∞)上為增函數(shù),且f(1)=0.那么不等式f(x-1)<0的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x3-
1
2
(a+b)x2+(ab-2)x+c
的極大值和極小值點(diǎn)分別為α、β,則a、b、α、β的大小關(guān)系可能為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校有6間電腦室,每天晚上至少開(kāi)放2間、則不同安排方案的種數(shù)為,①C62;②
C
2
6
+C63+2C64+C56+C66;③26-7;④P62,則正確的結(jié)論是(  )
A、僅有①B、僅有②
C、有②和③D、僅有④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在棱長(zhǎng)為1的正方體ABCD-A1 B1 C1 D1中,過(guò)AA1中點(diǎn)P作直線l,分別與異面直線BC、C1 D1相交于M、N兩點(diǎn),則線段MN的長(zhǎng)為( 。
A、6B、5C、4D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一個(gè)半徑為
21
3
的球內(nèi)有一個(gè)各棱長(zhǎng)都相等的內(nèi)接正三棱柱,則此三棱柱的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),橢圓過(guò)點(diǎn)(0,1)且離心率e=
3
2

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)A、B是橢圓上兩點(diǎn),且關(guān)于x軸對(duì)稱,E是橢圓上不同于A、B的一點(diǎn),且直線BE、AE分別交x軸于點(diǎn)P、Q,求證|OQ|•|OP|是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題:①一條直線必是某個(gè)一次函數(shù)的圖象;②一次函數(shù)y=kx+k的圖象必是一條不過(guò)原點(diǎn)的直線;③若一條直線上所有點(diǎn)的坐標(biāo)都是某個(gè)方程的解,則此方程叫做這條直線的方程;④以一個(gè)二元一次方程的解為坐標(biāo)的點(diǎn)都在某條直線上,則這條直線叫做此方程的直線.其中正確的命題個(gè)數(shù)是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x3+3x2-3mx+4有極大值5.
(1)求m;
(2)求過(guò)原點(diǎn)切線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案