某市現(xiàn)行出租車收費(fèi)標(biāo)準(zhǔn)如下:不考慮其他因素下,每次運(yùn)行起步價(jià)為(包括燃油附加費(fèi)在內(nèi))4里內(nèi)5元(不含4里),滿4里后的續(xù)程運(yùn)行價(jià)為每里跳表計(jì)費(fèi)1元.
(1)若某乘客坐出租車行駛了[n,n+1)(n∈N*,n≥4)里,他應(yīng)付給司機(jī)的費(fèi)用(元)記作an,求an(n≥4)的表達(dá)式.
(2)令bn=
3,n=1
4,n=2
5,n=3
an,n≥4,n∈N
,構(gòu)造函數(shù)f(n)=
1
n-2+b1
+
1
n-2+b2
+…+
1
n-2+bn
,n∈N*,n≥2,若對(duì)任意,都有恒成立,試求k的取值范圍.
考點(diǎn):數(shù)列的應(yīng)用
專題:綜合題,等差數(shù)列與等比數(shù)列
分析:(1)a4=6,n≥4時(shí),{an}構(gòu)成等差數(shù)列,公差為1,即可求an(n≥4)的表達(dá)式.
(2)bn=n+2,求出f(n),再利用作差法,確定f(n)隨n的增大而增大,可得其最小值,即可求k的取值范圍.
解答: 解:(1)易知a4=6,n≥4時(shí),{an}構(gòu)成等差數(shù)列,公差為1,----(2分)
故當(dāng)n∈N*,n≥4時(shí),an=a4+(n-4)×1=n+2------(5分)
(2)由已知{bn}構(gòu)成等差數(shù)列,即bn=n+2,n∈N*-------(6分)
f(n)=
1
n+1
+
1
n+2
+…+
1
n+n
,-----------(8分)
f(n+1)=
1
n+2
+
1
n+3
+…+
1
2n
+
1
2n+1
+
1
2n+2

所以f(n+1)-f(n)=
1
2n+1
+
1
2n+2
-
1
n+1
1
2n+2
+
1
2n+2
-
1
n+1
=0
-------(10分)
故f(n)隨n的增大而增大,其最小值為f(2)=
1
3
+
1
4
=
7
12
,
由已知,應(yīng)有k≤
7
12
,即 k∈(-∞,
7
12
]
-----(13分)
點(diǎn)評(píng):本題考查數(shù)列的應(yīng)用,考查數(shù)列的單調(diào)性,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在具有如圖所示的正視圖和俯視圖的幾何體中,體積最小的幾何體的表面積為 ( 。
A、13
B、7+3
2
C、
7
2
π
D、14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在長方體ABCD-A1B1C1D1中,已知DA=DC=4,DD1=3,求異面直線A1B與D1A所成角的余弦值( 。
A、
17
25
B、
9
25
C、
1
2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
x
4
+
a
x
-lnx-
3
2
,且曲線f(x)在點(diǎn)(1,f(1))處的切線垂直于直線y=
1
2
x.
(1)求a的值和切線方程;
(2)求f(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點(diǎn)(x,y)在橢圓4x2+y2=4上,則
y-1
x-2
的最大值為
 
,最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式-1≤sin2x+4cosx+a2≤13對(duì)一切實(shí)數(shù)x均成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax2+x+c
x
(ac>0),且x<0時(shí),函數(shù)f(x)的最小值為2,則x>0時(shí),函數(shù)f(x)的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,簡單組合體ABCDPE,其底面ABCD是邊長為2的正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC=2.
(Ⅰ)在線段PB上找一點(diǎn)M,使得ME⊥平面PBD;
(Ⅱ)在(Ⅰ)的條件下求三棱錐E-PMC的體積;
(Ⅲ)求二面角A-PB-E的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的頂點(diǎn)A的坐標(biāo)為(1,4),∠B,∠C平分線的方程分別為x-2y=0和x+y-1=0,求BC邊所在的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案