冪函數(shù)y=(m2-m-1)xm2-2m-1,當x∈(0,+∞)時為減函數(shù),則實數(shù)m的值是
 
考點:冪函數(shù)的概念、解析式、定義域、值域
專題:函數(shù)的性質(zhì)及應用
分析:根據(jù)冪函數(shù)的系數(shù)一定為1可先確定參數(shù)m的值,再根據(jù)單調(diào)性進行檢驗,可得答案.
解答: 解:∵函數(shù)y=(m2-m-1)xm2-2m-1是冪函數(shù)
∴可得m2-m-1=1,解得m=-1或2,
當m=-1時,函數(shù)為y=x2在區(qū)間(0,+∞)上單調(diào)遞增,不滿足題意
當m=2時,函數(shù)為y=x-1在(0,+∞)上單調(diào)遞減滿足條件
故答案為:2.
點評:本題主要考查冪函數(shù)的表達形式以及冪函數(shù)的單調(diào)性.屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,內(nèi)角A、B、C所對的邊分別為a、b、c,若A<B<90°<C,且2b=a+c,則
c
a
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
1
2
|x|-
1-x2
-1
的零點個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等比數(shù)列{an}的前n項和Sn=2n-a,n∈N*.設公差不為零的等差數(shù)列{bn}滿足:b1=a1+2,且b2+5,b4+5,b8+5成等比.
(Ⅰ) 求a及bn;
(Ⅱ) 設數(shù)列{an}的前n項和為Tn.求使Tn>bn的最小正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a=(
3
5
)-
1
3
,b=(
3
5
)-
1
2
,c=(
4
3
)-
1
2
,則a,b,c三個數(shù)的大小關系是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設全集U=R,A={y|y=tanx,x∈B},B={x||x|≤
π
4
},則圖中陰影部分表示的集合是( 。
A、[-1,1]
B、[-
π
4
,
π
4
]
C、[-1,-
π
4
)∪(
π
4
,1]
D、[-1,-
π
4
]∪[
π
4
,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)在定義域上是奇函數(shù),且在[a,b](0<a<b)上是減函數(shù),圖象如圖所示.
(1)化簡:f(
2a+b
3
)+f(
a+2b
3
)+f(
-2a-b
3
)+f(
-a-2b
3
);
(2)畫出函數(shù)f(x)在[-b,-a]上的圖象;
(3)證明:f(x)在[-b,-a]上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在極坐標系中,圓ρ=-2sinθ(ρ≥0,0≤θ≤2π)的圓心的極坐標是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+3x,數(shù)列{an}的前n項和為Sn,且對一切正整數(shù)n,點Pn(n,Sn)都在函數(shù)f(x)的圖象上.
(1)求數(shù)列{an}的通項公式;
(2)設A={x|x=an,n∈N*},B={x|x=2(an-1),n∈N*},等差數(shù)列{bn}的任一項bn∈A∩B,其中b1是A∩B中最的小數(shù),且88<b8<93,求{bn}的通項公式;
(3)設數(shù)列{cn}滿足cn+2-cn=a1,且c1=c,c2=a2-c,若數(shù)列{cn}為單調(diào)遞增數(shù)列,求實數(shù)c的取值范圍.

查看答案和解析>>

同步練習冊答案