某幾何體的三視圖如圖所示,其中俯視圖是半圓,則該幾何體的表面積為
 
考點(diǎn):由三視圖求面積、體積
專題:空間位置關(guān)系與距離
分析:三視圖復(fù)原可知幾何體是圓錐的一半,根據(jù)三視圖數(shù)據(jù),求出幾何體的表面積.
解答: 解:由題目所給三視圖可得,該幾何體為圓錐的一半,那么該幾何體的表面積為該圓錐表面積的一半與軸截面面積的和.
又該半圓錐的側(cè)面展開圖為扇形,所以側(cè)面積為
1
2
×π×1×2=π,底面積為
1
2
π,
觀察三視圖可知,軸截面為邊長為2的正三角形,所以軸截面面積為
1
2
×2×2×
3
2
=
3
,
則該幾何體的表面積為:
3
2
π+
3

故答案為:
3
2
π+
3
點(diǎn)評:本題考查的知識(shí)點(diǎn)是由三視圖求體積和表面積,解決本題的關(guān)鍵是得到該幾何體的形狀.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2-
ln|x|
x
,則函數(shù)y=f(x)的大致圖象為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三個(gè)內(nèi)角A、B、C的對邊分別為a,b,c,且△ABC的面積S=
3
2
accosB

(1)求角B的大;
(2)若a=2,且
π
4
≤A≤
π
3
,求邊c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)是奇函數(shù),且在(0,+∞)上是增函數(shù),函數(shù)g(x)是偶函數(shù),且在(0,+∞)上是減函數(shù),那么在(-∞,0)上,它們的增減性是( 。
A、f(x)是減函數(shù),g(x)是增函數(shù)
B、f(x)是增函數(shù),g(x)是減函數(shù)
C、f(x)是減函數(shù),g(x)是減函數(shù)
D、f(x)是增函數(shù),g(x)是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有一個(gè)幾何體的三視圖如圖所示,這個(gè)幾何體可能是一個(gè)( 。
A、棱臺(tái)B、棱錐
C、棱柱D、正八面體

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某三棱錐的三視圖如圖所示,該三棱錐的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式x2+2x-3≥0的解集是( 。
A、{x|-3≤x≤1}
B、{x|x≤-3或x≥1}
C、{x|x≥1}
D、{x|x≤-3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知公比為q的等比數(shù)列{an}(n∈N*)中,a2=2,前三項(xiàng)的和為7.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若0<q<1,設(shè)數(shù)列{bn}滿足bn=a1•a2…an,n∈N*,求使0<bn<1的n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

x-2=0是(x-2)(x+3)=0的(  )
A、充分而不必要條件
B、必要而不充分條件
C、充要條件
D、既不是充分條件,也不是必要條件

查看答案和解析>>

同步練習(xí)冊答案