已知函數(shù),,函數(shù)的圖像在點處的切線平行于軸.
(1)求的值;
(2)求函數(shù)的極小值;
(3)設(shè)斜率為的直線與函數(shù)的圖象交于兩點,(),證明:

(1) ;(2);(3)證明過程詳見解析.

解析試題分析:本題考查函數(shù)與導(dǎo)數(shù)及運用導(dǎo)數(shù)求切線方程、單調(diào)區(qū)間、最值等數(shù)學(xué)知識和方法,突出考查綜合運用數(shù)學(xué)知識和方法分析問題解決問題的能力.第一問,對求導(dǎo),將代入得到切線的斜率,由已知得,即,所以;第二問,利用第一問的結(jié)論得到的解析式,對求導(dǎo),判斷函數(shù)的單調(diào)性和極值;第三問,先用分析法得出與結(jié)論等價的式子,即,先證不等式的右邊,構(gòu)造函數(shù),通過求導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,求出最大值,所以,即,再證不等式的左邊,同樣構(gòu)造函數(shù),通過求導(dǎo),求出最小值,即,即,綜合上述兩部分的證明可得.
試題解析:(1)依題意得,則
由函數(shù)的圖象在點處的切線平行于軸得:
 .
(2)由(1)得 
∵函數(shù)的定義域為,令
函數(shù)上單調(diào)遞增,在單調(diào)遞減;在上單調(diào)遞增.故函數(shù)的極小值為
(3)證法一:依題意得,
要證,即證
,即證 
),即證
)則
在(1,+)上單調(diào)遞減,
 即,                 ①
)則
在(1,+)上單調(diào)遞增,
=0,即)                 ②
綜①②得),即
【證法二:依題意得,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

定義函數(shù)階函數(shù).
(1)求一階函數(shù)的單調(diào)區(qū)間;
(2)討論方程的解的個數(shù);
(3)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè),其中,曲線在點處的切線垂直于軸.
(1)求的值;
(2)求函數(shù)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)R,,
(1)求函數(shù)f(x)的值域;
(2)記函數(shù),若的最小值與無關(guān),求的取值范圍;
(3)若,直接寫出(不需給出演算步驟)關(guān)于的方程的解集

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(I)求函數(shù)的單調(diào)遞減區(qū)間;
(II)若上恒成立,求實數(shù)的取值范圍;
(III)過點作函數(shù)圖像的切線,求切線方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),其中
(I)若函數(shù)圖象恒過定點P,且點P關(guān)于直線的對稱點在的圖象上,求m的值;
(Ⅱ)當(dāng)時,設(shè),討論的單調(diào)性;
(Ⅲ)在(I)的條件下,設(shè),曲線上是否存在兩點P、Q,使△OPQ(O為原點)是以O(shè)為直角頂點的直角三角形,且斜邊的中點在y軸上?如果存在,求a的取值范圍;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),其中.
(1)若,求的最小值;
(2)如果在定義域內(nèi)既有極大值又有極小值,求實數(shù)的取值范圍;
(3)是否存在最小的正整數(shù),使得當(dāng)時,不等式恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),且在時函數(shù)取得極值.
(1)求的單調(diào)增區(qū)間;
(2)若,
(Ⅰ)證明:當(dāng)時,的圖象恒在的上方;
(Ⅱ)證明不等式恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),其中.
(1)若,求的最小值;
(2)如果在定義域內(nèi)既有極大值又有極小值,求實數(shù)的取值范圍;
(3)是否存在最小的正整數(shù),使得當(dāng)時,不等式恒成立.

查看答案和解析>>

同步練習(xí)冊答案