設(shè)f(x)=
ex
1+ax
,其中a為正實(shí)數(shù).
(Ⅰ)當(dāng)a=
4
3
時(shí),求f(x)的極值點(diǎn);
(Ⅱ)若f(x)為R上的單調(diào)函數(shù),求a的取值范圍.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:綜合題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)先求f(x)的導(dǎo)函數(shù),再利用f'(x)=0,根據(jù)單調(diào)性求極值點(diǎn).
(2)根據(jù)導(dǎo)函數(shù)與單調(diào)性的關(guān)系判斷f'(x)≥0在R上恒成立,再利用二次函數(shù)圖象和性質(zhì)討論解決.
解答: 解:對f(x)求導(dǎo)f′(x)=ex 
1+ax2-ax
(1+ax2)2
 ①
(I)a=
4
3
,f′(x)=0則4x2-8x+3=0解得x1=
3
2
,x2=
1
2

綜合①,可知

x(-∞,
1
2
1
2
1
2
3
2
3
2
3
2
,+∞)
f′(x)=+0-0+
f(x)極大值極小值
所以,x1=
3
2
是極小值點(diǎn),x2=
1
2
是極大值點(diǎn).
(II)若f(x)為R上的單調(diào)函數(shù),則f′(x)在R上不變號,結(jié)合①與條件a>0,ax2-2ax+1≥0
在R上恒成立,因?yàn)椤?4a2-4a≤0由此并結(jié)a>0,0<a≤1
點(diǎn)評:本題考查了導(dǎo)數(shù)在判斷單調(diào)性,極值問題中的應(yīng)用.
還有已知函數(shù)的單調(diào)性,求解參變量范圍問題,利用不等式的恒成立問題求解,這要求對函數(shù)、不等式問題理解要很深刻,應(yīng)用靈活
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=0,an+1=an+2
an+1
+1,則a13=(  )
A、143B、156
C、168D、195

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二項(xiàng)式(x+
1
2x
n(n∈N*,n≥2).
(1)若該二項(xiàng)式的展開式中前三項(xiàng)的系數(shù)成等差數(shù)列,求正整數(shù)n的值;
(2)在(1)的條件下,求展開式中x4項(xiàng)的系數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+b圖象上的點(diǎn)P(2,1)關(guān)于直線y=x的對稱點(diǎn)Q在函數(shù)g(x)=lnx+a上.
(Ⅰ)求函數(shù)h(x)=g(x)-f(x)的最大值;
(Ⅱ)對任意x1∈[-e,-1],x2∈[
e
,e2],是否存在實(shí)數(shù)k,使得不等式2k[g(x1)-2]+f(x1)+3<ln[f(x2)+3]成立?若存在,請求出實(shí)數(shù)k的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}為遞增的等比數(shù)列,且{a1,a3,a5}⊆{-10,-6,-2,0,1,3,4,16}.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若等差數(shù)列{bn}的通項(xiàng)公式為bn=n,求Sn=a1bn+a2bn-1+…+anb1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα=
4
5
,且α在第二象限.
(1)求cosα,tanα的值;
(2)化簡:
cos(
π
2
+α)cos(
11π
2
-α)
sin(-π-α)sin(
2
+α)
.并求值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,Sn+1=4an+2(n∈N+).
(1)若bn=an+1-2an,求bn;
(2)若dn=
an
2n-1
,證明{dn}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
+lnx,g(x)=
1
2
x2
(1)若直線l與f(x)與g(x)都相切,求l的方程;
(2)若對任意x1>x2>0,不等式t[g(x1)-g(x2)]>x1f(x1)-x2f(x2)恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的函數(shù),f(0)=2,且對任意實(shí)數(shù)x,y總有f(-x)=f(x),f(x+y)=f(x)+f(y)+2xy,求f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊答案