已知等比數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,且S2+
1
2
a2=4.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記bn=an•log2an,求數(shù)列{bn}的前n項(xiàng)和Tn
考點(diǎn):數(shù)列的求和,等比數(shù)列的通項(xiàng)公式
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:(1)設(shè)等比數(shù)列{an}的公比為q,利用等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和定義即可得出.
(2)bn=an•log2an=(n-1)•2n-1,利用“錯(cuò)位相減法”、等比數(shù)列的前n項(xiàng)和公式即可得出.
解答: 解:(1)設(shè)等比數(shù)列{an}的公比為q,
∵a1=1,且S2+
1
2
a2=4,
1+q+
1
2
q=4
,解得q=2,
an=2n-1
(2)bn=an•log2an=(n-1)•2n-1,
∴數(shù)列{bn}的前n項(xiàng)和Tn=0+2+2×22+3×23+…+(n-1)×2n-1
2Tn=0+22+2×23+3×24+…+(n-2)×2n-1+(n-1)×2n,
∴-Tn=2+22+23+…+2n-1-(n-1)×2n=
2(2n-1-1)
2-1
-(n-1)×2n=(2-n)×2n-2,
Tn=(n-2)×2n+2
點(diǎn)評(píng):本題考查了等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、“錯(cuò)位相減法”,考查了推理能力與計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

觀察下列等式:
12=1,12-22=-3.
12-22+32=6,12-22+32-42=10.
…,…,
照此規(guī)律,第6個(gè)等式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓錐的母線長(zhǎng)為5cm,圓錐的側(cè)面展開(kāi)圖如圖所示,且∠AOA1=120°,一只螞蟻欲從圓錐的底面上的點(diǎn)A出發(fā),沿圓錐側(cè)面爬行一周回到點(diǎn)A.則螞蟻爬行的最短路程長(zhǎng)為( 。 
A、8 cm
B、5
3
cm
C、10 cm
D、5πcm

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a|x+1|-b|2x-4|,當(dāng)a=1,b=
1
2
時(shí),解不等式f(x)≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα+cosα=
3
5
.求:
(1)sinαcosα;
(2)sin3α+cos3α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某學(xué)校有120名教師,其年齡都在20~60歲之間,各年齡段人數(shù)按[20,30),[30,40),[40,50),[50,60)分組,其頻率分布直方圖如右圖所示.學(xué)校為了適應(yīng)新課程改革,要求每名教師都要參加甲、乙兩項(xiàng)培訓(xùn),培訓(xùn)結(jié)束后進(jìn)行結(jié)業(yè)考試,已知各年齡段兩項(xiàng)培訓(xùn)結(jié)業(yè)考試成績(jī)優(yōu)秀的人數(shù)如下表所示.假設(shè)兩項(xiàng)培訓(xùn)是相互獨(dú)立的,結(jié)業(yè)考試也互不影響.
年齡分組甲項(xiàng)培訓(xùn)成績(jī)優(yōu)秀人數(shù)乙項(xiàng)培訓(xùn)成績(jī)優(yōu)秀人數(shù)
[20,30)3018
[30,40)3624
[40,50)129
[50,60)43
(1)若用分層抽樣法從全校教師中抽取一個(gè)容量為40的樣本,求各年齡段應(yīng)分別抽取的人數(shù),并估計(jì)全校教師的平均年齡;
(2)隨機(jī)從年齡段[20,30)和[30,40)中各抽取1人,求這兩人中至少有一人在甲、乙兩項(xiàng)培訓(xùn)結(jié)業(yè)考試成績(jī)?yōu)閮?yōu)秀的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)點(diǎn)P是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)上一點(diǎn),F(xiàn)1,F(xiàn)2分別是雙曲線的左、右焦點(diǎn),PF1⊥PF2,且|PF1|=3|PF2|,則雙曲線的離心率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

3
sinα+sin(
2
-α)=
1
2
,則sin(
π
6
+2α)
的值為( 。
A、
7
8
B、
1
8
C、
1
4
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖1所示,以點(diǎn)M(-1,0)為圓心的圓與y軸,x軸分別交于點(diǎn)A,B,C,D,直線y=-
3
3
x-
5
3
3
與⊙M相切于點(diǎn)H,交x軸于點(diǎn)E,交y軸于點(diǎn)F.
(1)請(qǐng)直接寫(xiě)出OE,⊙M的半徑r,CH的長(zhǎng);
(2)如圖2所示,弦HQ交x軸于點(diǎn)P,且DP:PH=3:2,求cos∠QHC的值;
(3)如圖3所示,點(diǎn)K為線段EC上一動(dòng)點(diǎn)(不與E,C重合),連接BK交⊙M于點(diǎn)T,弦AT交x軸于點(diǎn)N.是否存在一個(gè)常數(shù)a,始終滿(mǎn)足MN•MK=a,如果存在,請(qǐng)求出a的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案