點P在曲線上移動,設在點P處的切線的傾斜角為為,則的取值范圍是
【解析】
試題分析:根據(jù)導數(shù)的幾何意義可知切線的斜率即為該點處的導數(shù),再根據(jù)導數(shù)的取值范圍求出斜率的范圍,最后再根據(jù)斜率與傾斜角之間的關系k=tanα,求出α的范圍即可。解:∵tanα=3x2-1,∴tanα∈[-1,+∞).=當tanα∈[0,+∞)時,α∈[0,);當tanα∈[-1,0)時,α∈[,,π).∴α∈[0,)∪[,π).故答案。
考點:導數(shù)研究曲線上某點切線的方程
點評:此題考查了利用導數(shù)研究曲線上某點切線的方程,直線傾斜角與斜率的關系,以及正切函數(shù)的圖象與性質.要求學生掌握導函數(shù)在某點的函數(shù)值即為過這點切線方程的斜率,且直線的斜率為傾斜角的正切值,掌握正切函數(shù)的圖象與性質.
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
如圖所示,△ABC為直角三角形,∠C=90°,若 =(0,-4),M在軸上,且AM=,點C在軸上移動.
(Ⅰ)求點B的軌跡E的方程;
(Ⅱ)過點F(0,)的直線與曲線E交于P、Q兩點,設N(0,)(<0),與的夾角為,若≤等恒成立,求的取值范圍;
(Ⅲ)設以點N為圓心,以半徑的圓與曲線E在第一象限的交點為H,若圓在點H處的切線與曲線E在點H處的切線互相垂直,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
如圖所示,△ABC為直角三角形,∠C=90°,若 =(0,-4),M在軸上,且AM=,點C在軸上移動.
(Ⅰ)求點B的軌跡E的方程;
(Ⅱ)過點F(0,)的直線與曲線E交于P、Q兩點,設N(0,)(<0),與的夾角為,若≤恒成立,求的取值范圍;
(Ⅲ)設以點N為圓心,以半徑的圓與曲線E在第一象限的交點為H,若圓在點H處的切線與曲線E在點H處的切線互相垂直,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com