點P在曲線上移動,設在點P處的切線的傾斜角為為,則的取值范圍是              

 

【答案】

【解析】

試題分析:根據(jù)導數(shù)的幾何意義可知切線的斜率即為該點處的導數(shù),再根據(jù)導數(shù)的取值范圍求出斜率的范圍,最后再根據(jù)斜率與傾斜角之間的關系k=tanα,求出α的范圍即可。解:∵tanα=3x2-1,∴tanα∈[-1,+∞).=當tanα∈[0,+∞)時,α∈[0,);當tanα∈[-1,0)時,α∈[,,π).∴α∈[0,)∪[,π).故答案。

考點:導數(shù)研究曲線上某點切線的方程

點評:此題考查了利用導數(shù)研究曲線上某點切線的方程,直線傾斜角與斜率的關系,以及正切函數(shù)的圖象與性質.要求學生掌握導函數(shù)在某點的函數(shù)值即為過這點切線方程的斜率,且直線的斜率為傾斜角的正切值,掌握正切函數(shù)的圖象與性質.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xoy中,設點F(1,0),直線l:x=-1,點P在直線l上移動,R是線段PF與y軸的交點,RQ⊥FP,PQ⊥l.
(1)求動點Q的軌跡的方程;
(2)記Q的軌跡的方程為E,過點F作兩條互相垂直的曲線E的弦AB、CD,設AB、CD的中點分別為M,N.求證:直線MN必過定點R(3,0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

P在曲線y=x3x+上移動,設過點P的切線的傾斜角為α,則α的取值范圍是__________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,△ABC為直角三角形,∠C=90°,若 =(0,-4),M在軸上,且AM=,點C在軸上移動.

 

(Ⅰ)求點B的軌跡E的方程;  

(Ⅱ)過點F(0,)的直線與曲線E交于P、Q兩點,設N(0,)(<0),的夾角為,若等恒成立,求的取值范圍;

(Ⅲ)設以點N為圓心,以半徑的圓與曲線E在第一象限的交點為H,若圓在點H處的切線與曲線E在點H處的切線互相垂直,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,△ABC為直角三角形,∠C=90°,若 =(0,-4),M在軸上,且AM=,點C在軸上移動.

(Ⅰ)求點B的軌跡E的方程;  

(Ⅱ)過點F(0,)的直線與曲線E交于P、Q兩點,設N(0,)(<0),的夾角為,若恒成立,求的取值范圍;

(Ⅲ)設以點N為圓心,以半徑的圓與曲線E在第一象限的交點為H,若圓在點H處的切線與曲線E在點H處的切線互相垂直,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

P在曲線y=x3-x+上移動,設過點P的切線的傾斜角為α,則α的取值范圍是        .

查看答案和解析>>

同步練習冊答案