已知f(x)為奇函數(shù),當(dāng)x∈[0,2]時,f(x)=-x2+2x;當(dāng)x∈(2,+∞)時,f(x)=2x-4,若關(guān)于x的不等式f(x+a)>f(x)有解,則a的取值范圍為
 
考點:函數(shù)單調(diào)性的性質(zhì)
專題:綜合題,函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)題意畫出函數(shù)f(x)的圖象,根據(jù)圖象及函數(shù)f(x)的單調(diào)性,f(x+a),和f(x)的取值即可找出a的范圍.
解答: 解:由題意作出函數(shù)f(x)的圖象,如圖所示:若a>0,則x≥2時,x+a>2,x+a>x;
f(x)在[2,+∞)上單調(diào)遞增,所以f(x+a)>f(x),即該不等式有解;
若a<0,x+a<x,若x≥2,則x+a≥2+a,要使不等式f(x+a)>f(x)有解,需2+a>0,即a>-2;
若0≤x<2,則a≤x+a<2+a,則需2+a>0,即a>-2時,f(x+a)>f(x)有解;
若-2<x<0,-2+a<x+a<a,則需a>-2,不等式f(x+a)>f(x)有解;
若x≤-2,x+a≤a-2<-2,函數(shù)f(x)在(-∞,-2]為增函數(shù),所以f(x+a)<f(x),即不等式f(x+a)>f(x)無解;
綜上得a的取值范圍是(-2,0∪(0,+∞).
故答案為:(-2,0)∪(0,+∞).
點評:考查奇函數(shù)的概念,二次函數(shù)圖象,奇函數(shù)圖象關(guān)于原點的對稱性,以及函數(shù)單調(diào)性的定義.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
3
2x+1
+
9-x
的定義域是( 。
A、(-
1
2
,9]
B、(-
1
2
,9)
C、[-
1
2
,9)
D、[-
1
2
,9]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別是a,b,c,若∠A:∠B=1:1,a:c=2:3則cos2A的值為( 。
A、
2
3
B、
1
2
C、
1
3
D、
1
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)[x]表示不大于x的最大整數(shù),則對任意實數(shù)x,有( 。
A、[-x]=-[x]
B、[x+
1
2
]=[x]
C、[2x]=2[x]
D、[x]+[x+
1
2
]=[2x]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)校為調(diào)查高二年級學(xué)生的身高情況,按隨機抽樣的方法抽取200名學(xué)生,得到男生身高情況的頻率分布直方圖(圖(1))和女生身高情況的頻率分布直方圖(圖(2)).已知圖(1)中身高在170~175cm的男生人數(shù)有48人.

(Ⅰ)在抽取的學(xué)生中,身高不超過165cm的男、女生各有多少人?并估計男生的平均身高.
(Ⅱ)在上述200名學(xué)生中,從身高在170~175cm之間的學(xué)生按男、女性別分層抽樣的方法,抽出7人,從這7人中選派4人當(dāng)旗手,求4人中至少有一名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)的定義域為R,f(-1)=2,對任意x∈R,f′(x)>2,則f(x)>2x+4的解集為(  )
A、(-1,+∞)
B、(-∞,-1)
C、(2,+∞)
D、(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

cos
31π
6
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐 S-ABC中,AC⊥SA,AC⊥AB,SA=SB=AB=2,AC=1.
(1)求異面直線AB與SC所成的角的余弦值;
(2)在線段AB上求一點D,使CD與平面SAC為45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了調(diào)查甲、乙兩個網(wǎng)站受歡迎的程度,隨機選取了14天,統(tǒng)計上午8:00-10:00 間各自的點擊量,得如圖所示的統(tǒng)計圖,根據(jù)統(tǒng)計圖:
(I)甲、乙兩個網(wǎng)站點擊量的極差分別是多少?
(Ⅱ)甲網(wǎng)站點擊量在[10,40]間的頻率是多少?
(Ⅲ)甲、乙兩個網(wǎng)站點擊量的中位數(shù)和平均數(shù)分別是多少?由此說明哪個網(wǎng)站更受歡迎?

查看答案和解析>>

同步練習(xí)冊答案