【題目】已知四棱錐,其中的中點.

(1)求證:

(2)求證:面;

(3)求四棱錐的體積.

【答案】(1)證明見解析;(2)證明見解析;(3).

【解析】

試題分析:(1)中點,連接,根據(jù)三角形的中位線,得到四邊形為平行四邊形,進而得到,再結(jié)合線面平行的判定定理,即可證明(2)根據(jù)為等邊三角形,的中點,,得到,根據(jù)線面垂直的判定定理得到,則,再由面面垂直的判定定理,可得面;(3)連接,可得四棱錐分為兩個三棱錐,利用體積公式,即可求解三棱錐的體積.

試題解析:(1)證明:取中點,連接 分別是 的中點, ,且 平行且相等,為平行四邊形,,又.

(2)證明:為等邊三角形,,垂直于面的兩條相交直線.

(3)連接,該四棱錐分為兩個三棱錐.

.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】知函數(shù).

(1)判斷單調(diào)性;

(2)已不等式任意成立;函數(shù)兩個零點分別在區(qū)間內(nèi),如果真,為假,求實數(shù)取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),且

(1)若函數(shù)在區(qū)間上是減函數(shù),求實數(shù)的取值范圍;

(2)設函數(shù),當時,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為自然對數(shù)的底數(shù).

)求函數(shù)在區(qū)間上的最值;

)當時,設函數(shù)(其中為常數(shù))的3個極值點為,且,將這5個數(shù)按照從小到大的順序排列,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解今年某校高三畢業(yè)班想?yún)④姷膶W生體重情況,將所得的數(shù)據(jù)整理后,畫出了頻率分布直方圖(如圖).已知圖中從左到右的前3個小組的頻率之比為1:2:3,其中第2小組的頻數(shù)為24.

)求該校高三畢業(yè)班想?yún)④姷膶W生人數(shù);

)以這所學校的樣本數(shù)據(jù)來估計全省的總體數(shù)據(jù),若從全省高三畢業(yè)班想?yún)④姷耐瑢W中(人數(shù)很多)任選三人,設表示體重超過60公斤的學生人數(shù),求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知方程

(1)求該方程表示一條直線的條件;

(2)當為何實數(shù)時,方程表示的直線斜率不存在?求出這時的直線方程;

(3)已知方程表示的直線軸上的截距為-3,求實數(shù)的值;

(4)若方程表示的直線的傾斜角是45°,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】連江一中第49屆田徑運動會提出了“我運動、我陽光、我健康、我快樂”的口號,某同學要設計一張如圖所示的豎向張貼的長方形海報進行宣傳,要求版心面積為162 版心是指圖中的長方形陰影部分,為長度單位分米),上、下兩邊各空2 ,左、右兩邊各空1 .

)若設版心的高為 ,求海報四周空白面積關(guān)于的函數(shù)的解析式;

)要使海報四周空白面積最小,版心的高和寬該如何設計?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正四面體的頂點、分別在兩兩垂直的三條射線, , 上,則在下列命題中,錯誤的是( )

A. 是正三棱錐

B. 直線與平面相交

C. 直線與平面所成的角的正弦值為

D. 異面直線所成角是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)處取得極值.

(1)討論是函數(shù)的極大值還是極小值;

(2)過點作曲線的切線,求此切線方程.

查看答案和解析>>

同步練習冊答案