7.如圖,已知⊙O1、⊙O2的半徑分別為r1、r2,⊙O2經(jīng)過點(diǎn)O1,且兩圓相交于點(diǎn)A、B,C為⊙O2上的點(diǎn),連接AC交⊙O1于點(diǎn)D,再連接BC、BD、AO1、AO2、O1O2有如下四個(gè)結(jié)論:①∠BDC=∠AO1O2;②$\frac{BD}{BC}$=$\frac{{r}_{1}}{{r}_{2}}$③AD=DC  ④BC=DC,其中正確結(jié)論的序號(hào)為①②④.

分析 ①延長O2O1交圓O1于M,連接AB、AM、BM、O2B,根據(jù)相交兩圓的性質(zhì)推出O2O1是AB的垂直平分線,得出∠AO1O2=$\frac{1}{2}$∠AO1B=∠AMB,根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠AMB=∠BDC,即可判斷;②證△BDC∽△AO1O2即可;③無法證出BD=DC,即可判斷③;④由△BDC∽△AO1O2,得出∠O2AO1=∠DBC,∠BDC=∠AO1O2,根據(jù)等腰三角形的性質(zhì)得出∠BDC=∠CBD即可.

解答 解:延長O2O1交圓O1于M,連接AB、AM、BM、O2B,
∵圓O1與圓O2交于A、B,
∴O2O1是AB的垂直平分線,
∵O1A=O1B,
∴∠AO1O2=$\frac{1}{2}$∠AO1B=∠AMB,
∵四邊形AMBD是圓O1的內(nèi)接四邊形,
∴∠AMB=∠BDC,
∴①正確;
∵O1A=O1B,
∴∠C=$\frac{1}{2}$∠AO2B=∠AO2M,∠AO1O2=∠AMB,
∴△BDC∽△AO1O2,
∴$\frac{BD}{BC}$=$\frac{{r}_{1}}{{r}_{2}}$,
∴②正確;
∵△BDC∽△AO1O2
∴∠O2AO1=∠DBC,∠BDC=∠AO1O2,
∵O2A=O2B,
∴∠AO1O2=∠O2AO1,
∴∠DBC=∠BDC,
∴DC=BC,∴④正確;
無法證出∠C=∠DBC,
即BD≠DC,
∵AD=BD,
∴③錯(cuò)誤.
故答案為:①②④.

點(diǎn)評(píng) 本題主要考查對(duì)相似三角形的性質(zhì)和判定,等腰三角形的性質(zhì)和判定,相交兩圓的性質(zhì),圓的內(nèi)接四邊形的性質(zhì),圓周角定理,線段的垂直平分線性質(zhì)等知識(shí)點(diǎn)的理解和掌握,綜合運(yùn)用這些性質(zhì)進(jìn)行證明是證此題的關(guān)鍵,題型較好,難度適中.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.類比平面內(nèi)三角形“三邊垂直平分線的交點(diǎn)是三角形外接圓圓心”的性質(zhì),可推知四面體的下列性質(zhì)( 。
A.過四面體各面的垂心分別與各面垂直的直線交點(diǎn)為四面體外接球球心
B.過四面體各面的內(nèi)心分別與各面垂直的直線交點(diǎn)為四面體外接球球心
C.過四面體各面的重心分別與各面垂直的直線交點(diǎn)為四面體外接球球心
D.過四面體各面的外心分別與各面垂直的直線交點(diǎn)為四面體外接球球心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知關(guān)于x的不等式ax2-3x+2≤0的解集為{x|1≤x≤b}.
(1)求實(shí)數(shù)a,b的值;
(2)解關(guān)于x的不等式:$\frac{x+3}{ax-b}$>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)y=tanx-1的定義域?yàn)?\left\{{x\left|{x≠\frac{π}{2}+kπ,k∈z}\right.}\right\}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知實(shí)數(shù)a≠b,且滿足(a+1)2=3-3(a+1),3(b+1)=3-(b+1)2,則b$\sqrt{\frac{a}}$+a$\sqrt{\frac{a}}$的值為( 。
A.-23B.23C.13D.-13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知菱形ABCD的中心為O,∠BAD=$\frac{π}{3}$,AB=1,則($\overrightarrow{OA}$-$\overrightarrow{OB}$)•($\overrightarrow{AD}$+$\overrightarrow{AB}$)等于-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,三棱柱ABC-A1B1C1中,CC1⊥平面ABC,∠ACB=90°,BB1=3,AC=BC=2,D,E分別為AB,BC的中點(diǎn),F(xiàn)為BB1上一點(diǎn),且$\frac{BF}{F{B}_{1}}$=$\frac{2}{7}$.
(1)求證:平面CDF⊥平面A1C1E;
(2)求二面角C1-CD-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知復(fù)數(shù)z滿足(3+4i)z=25,則z對(duì)應(yīng)的點(diǎn)在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)$f(x)=ln(1+x)-x+\frac{k}{2}{x^2}(k≥0)$.
(Ⅰ)當(dāng)k=0時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)當(dāng)k≠1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)k=0時(shí),若x>-1,證明:$ln(x+1)≥1-\frac{1}{x+1}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案