已知α∈(-
π
2
,0)
,cosα=
3
5
,則tan(α+
π
4
)
=
-
1
7
-
1
7
分析:所求式子利用誘導(dǎo)公式化簡(jiǎn),將sinα算出并求出tanα帶入可求出值.
解答:α∈(-
π
2
,0),cosα=
3
5

∴sinα=
1-cos2α
=-
4
5

即tanα=-
4
3

∴tan(α+
π
4
)=
tanα+tan
π
4
1-tanαtan
π
4
=-
1
7

故答案為:-
1
7
點(diǎn)評(píng):考查了兩角和公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α?(-
π
2
,0),sinα=-
3
5
,則cos(π-α)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•杭州模擬)已知α∈(-
π
2
,0),sinα=-
4
5
,則tan(α+
π
4
)
等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•松江區(qū)二模)已知α∈(-
π
2
,0)
,且cosα=
4
5
,則sin2α=
-
24
25
-
24
25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•順德區(qū)模擬)已知α∈(-
π
2
,0)
,cosα=
3
5
,則tan(α+
π
4
)
=(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案